|
|
@ -30,11 +30,13 @@ class SegmentationValidator(BaseValidator):
|
|
|
|
|
|
|
|
|
|
|
|
def preprocess(self, batch):
|
|
|
|
def preprocess(self, batch):
|
|
|
|
batch["img"] = batch["img"].to(self.device, non_blocking=True)
|
|
|
|
batch["img"] = batch["img"].to(self.device, non_blocking=True)
|
|
|
|
batch["img"] = (batch["img"].half() if self.args.half else batch["img"].float()) / 225
|
|
|
|
batch["img"] = (batch["img"].half() if self.args.half else batch["img"].float()) / 255
|
|
|
|
batch["bboxes"] = batch["bboxes"].to(self.device)
|
|
|
|
|
|
|
|
batch["masks"] = batch["masks"].to(self.device).float()
|
|
|
|
batch["masks"] = batch["masks"].to(self.device).float()
|
|
|
|
self.nb, _, self.height, self.width = batch["img"].shape # batch size, channels, height, width
|
|
|
|
self.nb, _, self.height, self.width = batch["img"].shape # batch size, channels, height, width
|
|
|
|
self.targets = torch.cat((batch["batch_idx"].view(-1, 1), batch["cls"].view(-1, 1), batch["bboxes"]), 1)
|
|
|
|
self.targets = torch.cat((batch["batch_idx"].view(-1, 1), batch["cls"].view(-1, 1), batch["bboxes"]), 1)
|
|
|
|
|
|
|
|
self.targets = self.targets.to(self.device)
|
|
|
|
|
|
|
|
height, width = batch["img"].shape[2:]
|
|
|
|
|
|
|
|
self.targets[:, 2:] *= torch.tensor((width, height, width, height), device=self.device) # to pixels
|
|
|
|
self.lb = [self.targets[self.targets[:, 0] == i, 1:]
|
|
|
|
self.lb = [self.targets[self.targets[:, 0] == i, 1:]
|
|
|
|
for i in range(self.nb)] if self.args.save_hybrid else [] # for autolabelling
|
|
|
|
for i in range(self.nb)] if self.args.save_hybrid else [] # for autolabelling
|
|
|
|
|
|
|
|
|
|
|
@ -75,7 +77,7 @@ class SegmentationValidator(BaseValidator):
|
|
|
|
agnostic=self.args.single_cls,
|
|
|
|
agnostic=self.args.single_cls,
|
|
|
|
max_det=self.args.max_det,
|
|
|
|
max_det=self.args.max_det,
|
|
|
|
nm=self.nm)
|
|
|
|
nm=self.nm)
|
|
|
|
return (p, preds[0], preds[2])
|
|
|
|
return (p, preds[1], preds[2])
|
|
|
|
|
|
|
|
|
|
|
|
def update_metrics(self, preds, batch):
|
|
|
|
def update_metrics(self, preds, batch):
|
|
|
|
# Metrics
|
|
|
|
# Metrics
|
|
|
@ -83,7 +85,7 @@ class SegmentationValidator(BaseValidator):
|
|
|
|
for si, (pred, proto) in enumerate(zip(preds[0], preds[1])):
|
|
|
|
for si, (pred, proto) in enumerate(zip(preds[0], preds[1])):
|
|
|
|
labels = self.targets[self.targets[:, 0] == si, 1:]
|
|
|
|
labels = self.targets[self.targets[:, 0] == si, 1:]
|
|
|
|
nl, npr = labels.shape[0], pred.shape[0] # number of labels, predictions
|
|
|
|
nl, npr = labels.shape[0], pred.shape[0] # number of labels, predictions
|
|
|
|
shape = Path(batch["im_file"][si])
|
|
|
|
shape = batch["shape"][si]
|
|
|
|
# path = batch["shape"][si][0]
|
|
|
|
# path = batch["shape"][si][0]
|
|
|
|
correct_masks = torch.zeros(npr, self.niou, dtype=torch.bool, device=self.device) # init
|
|
|
|
correct_masks = torch.zeros(npr, self.niou, dtype=torch.bool, device=self.device) # init
|
|
|
|
correct_bboxes = torch.zeros(npr, self.niou, dtype=torch.bool, device=self.device) # init
|
|
|
|
correct_bboxes = torch.zeros(npr, self.niou, dtype=torch.bool, device=self.device) # init
|
|
|
@ -106,22 +108,29 @@ class SegmentationValidator(BaseValidator):
|
|
|
|
if self.args.single_cls:
|
|
|
|
if self.args.single_cls:
|
|
|
|
pred[:, 5] = 0
|
|
|
|
pred[:, 5] = 0
|
|
|
|
predn = pred.clone()
|
|
|
|
predn = pred.clone()
|
|
|
|
ops.scale_boxes(batch["img"][si].shape[1:], predn[:, :4], shape, batch["shape"][si][1]) # native-space pred
|
|
|
|
ops.scale_boxes(batch["img"][si].shape[1:], predn[:, :4], shape) # native-space pred
|
|
|
|
|
|
|
|
|
|
|
|
# Evaluate
|
|
|
|
# Evaluate
|
|
|
|
if nl:
|
|
|
|
if nl:
|
|
|
|
tbox = ops.xywh2xyxy(labels[:, 1:5]) # target boxes
|
|
|
|
tbox = ops.xywh2xyxy(labels[:, 1:5]) # target boxes
|
|
|
|
ops.scale_boxes(batch["img"][si].shape[1:], tbox, shape, batch["shapes"][si][1]) # native-space labels
|
|
|
|
ops.scale_boxes(batch["img"][si].shape[1:], tbox, shape) # native-space labels
|
|
|
|
labelsn = torch.cat((labels[:, 0:1], tbox), 1) # native-space labels
|
|
|
|
labelsn = torch.cat((labels[:, 0:1], tbox), 1) # native-space labels
|
|
|
|
correct_bboxes = self._process_batch(predn, labelsn, self.iouv)
|
|
|
|
correct_bboxes = self._process_batch(predn, labelsn, self.iouv)
|
|
|
|
correct_masks = self._process_batch(predn, labelsn, self.iouv, pred_masks, gt_masks, masks=True)
|
|
|
|
# TODO: maybe remove these `self.` arguments as they already are member variable
|
|
|
|
|
|
|
|
correct_masks = self._process_batch(predn,
|
|
|
|
|
|
|
|
labelsn,
|
|
|
|
|
|
|
|
self.iouv,
|
|
|
|
|
|
|
|
pred_masks,
|
|
|
|
|
|
|
|
gt_masks,
|
|
|
|
|
|
|
|
overlap=self.args.overlap_mask,
|
|
|
|
|
|
|
|
masks=True)
|
|
|
|
if self.args.plots:
|
|
|
|
if self.args.plots:
|
|
|
|
self.confusion_matrix.process_batch(predn, labelsn)
|
|
|
|
self.confusion_matrix.process_batch(predn, labelsn)
|
|
|
|
self.stats.append((correct_masks, correct_bboxes, pred[:, 4], pred[:, 5], labels[:,
|
|
|
|
self.stats.append((correct_masks, correct_bboxes, pred[:, 4], pred[:, 5], labels[:,
|
|
|
|
0])) # (conf, pcls, tcls)
|
|
|
|
0])) # (conf, pcls, tcls)
|
|
|
|
|
|
|
|
|
|
|
|
pred_masks = torch.as_tensor(pred_masks, dtype=torch.uint8)
|
|
|
|
pred_masks = torch.as_tensor(pred_masks, dtype=torch.uint8)
|
|
|
|
if self.plots and self.batch_i < 3:
|
|
|
|
if self.args.plots and self.batch_i < 3:
|
|
|
|
plot_masks.append(pred_masks[:15].cpu()) # filter top 15 to plot
|
|
|
|
plot_masks.append(pred_masks[:15].cpu()) # filter top 15 to plot
|
|
|
|
|
|
|
|
|
|
|
|
# TODO: Save/log
|
|
|
|
# TODO: Save/log
|
|
|
|