ultralytics 8.0.90 actions and docs improvements (#2326)

Co-authored-by: calmisential <xinyu_std@163.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: triple Mu <gpu@163.com>
Co-authored-by: Laughing <61612323+Laughing-q@users.noreply.github.com>
Co-authored-by: Ayush Chaurasia <ayush.chaurarsia@gmail.com>
Co-authored-by: Laughing-q <1185102784@qq.com>
Co-authored-by: ran xiao <ben.xiao@me.com>
Co-authored-by: rxiao <ran.xiao@silverpond.com.au>
This commit is contained in:
Glenn Jocher
2023-04-29 20:16:56 +02:00
committed by GitHub
parent 243fc4b1fe
commit 44c7c3514d
39 changed files with 783 additions and 143 deletions

View File

@ -205,7 +205,7 @@ class FocalLoss(nn.Module):
return loss.mean()
elif self.reduction == 'sum':
return loss.sum()
else: # 'none'
else: # 'None'
return loss

View File

@ -148,7 +148,7 @@ def non_max_suppression(
Perform non-maximum suppression (NMS) on a set of boxes, with support for masks and multiple labels per box.
Arguments:
prediction (torch.Tensor): A tensor of shape (batch_size, num_boxes, num_classes + 4 + num_masks)
prediction (torch.Tensor): A tensor of shape (batch_size, num_classes + 4 + num_masks, num_boxes)
containing the predicted boxes, classes, and masks. The tensor should be in the format
output by a model, such as YOLO.
conf_thres (float): The confidence threshold below which boxes will be filtered out.

View File

@ -469,3 +469,39 @@ def output_to_target(output, max_det=300):
targets.append(torch.cat((j, cls, xyxy2xywh(box), conf), 1))
targets = torch.cat(targets, 0).numpy()
return targets[:, 0], targets[:, 1], targets[:, 2:]
def feature_visualization(x, module_type, stage, n=32, save_dir=Path('runs/detect/exp')):
"""
Visualize feature maps of a given model module during inference.
Args:
x (torch.Tensor): Features to be visualized.
module_type (str): Module type.
stage (int): Module stage within the model.
n (int, optional): Maximum number of feature maps to plot. Defaults to 32.
save_dir (Path, optional): Directory to save results. Defaults to Path('runs/detect/exp').
Returns:
None: This function does not return any value; it saves the visualization to the specified directory.
"""
for m in ['Detect', 'Pose', 'Segment']:
if m in module_type:
return
batch, channels, height, width = x.shape # batch, channels, height, width
if height > 1 and width > 1:
f = save_dir / f"stage{stage}_{module_type.split('.')[-1]}_features.png" # filename
blocks = torch.chunk(x[0].cpu(), channels, dim=0) # select batch index 0, block by channels
n = min(n, channels) # number of plots
fig, ax = plt.subplots(math.ceil(n / 8), 8, tight_layout=True) # 8 rows x n/8 cols
ax = ax.ravel()
plt.subplots_adjust(wspace=0.05, hspace=0.05)
for i in range(n):
ax[i].imshow(blocks[i].squeeze()) # cmap='gray'
ax[i].axis('off')
LOGGER.info(f'Saving {f}... ({n}/{channels})')
plt.savefig(f, dpi=300, bbox_inches='tight')
plt.close()
np.save(str(f.with_suffix('.npy')), x[0].cpu().numpy()) # npy save