Add Conv2() module (#2820)

This commit is contained in:
Glenn Jocher
2023-05-25 18:12:50 +02:00
committed by GitHub
parent d19c5b6ce8
commit 441e67d330
13 changed files with 92 additions and 45 deletions

View File

@ -1,15 +1,28 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
"""
Ultralytics modules. Visualize with:
from ultralytics.nn.modules import *
import torch
import os
x = torch.ones(1, 128, 40, 40)
m = Conv(128, 128)
f = f'{m._get_name()}.onnx'
torch.onnx.export(m, x, f)
os.system(f'onnxsim {f} {f} && open {f}')
"""
from .block import (C1, C2, C3, C3TR, DFL, SPP, SPPF, Bottleneck, BottleneckCSP, C2f, C3Ghost, C3x, GhostBottleneck,
HGBlock, HGStem, Proto, RepC3)
from .conv import (CBAM, ChannelAttention, Concat, Conv, ConvTranspose, DWConv, DWConvTranspose2d, Focus, GhostConv,
LightConv, RepConv, SpatialAttention)
from .conv import (CBAM, ChannelAttention, Concat, Conv, Conv2, ConvTranspose, DWConv, DWConvTranspose2d, Focus,
GhostConv, LightConv, RepConv, SpatialAttention)
from .head import Classify, Detect, Pose, RTDETRDecoder, Segment
from .transformer import (AIFI, MLP, DeformableTransformerDecoder, DeformableTransformerDecoderLayer, LayerNorm2d,
MLPBlock, MSDeformAttn, TransformerBlock, TransformerEncoderLayer, TransformerLayer)
__all__ = [
'Conv', 'LightConv', 'RepConv', 'DWConv', 'DWConvTranspose2d', 'ConvTranspose', 'Focus', 'GhostConv',
'Conv', 'Conv2', 'LightConv', 'RepConv', 'DWConv', 'DWConvTranspose2d', 'ConvTranspose', 'Focus', 'GhostConv',
'ChannelAttention', 'SpatialAttention', 'CBAM', 'Concat', 'TransformerLayer', 'TransformerBlock', 'MLPBlock',
'LayerNorm2d', 'DFL', 'HGBlock', 'HGStem', 'SPP', 'SPPF', 'C1', 'C2', 'C3', 'C2f', 'C3x', 'C3TR', 'C3Ghost',
'GhostBottleneck', 'Bottleneck', 'BottleneckCSP', 'Proto', 'Detect', 'Segment', 'Pose', 'Classify',

View File

@ -43,6 +43,27 @@ class Conv(nn.Module):
return self.act(self.conv(x))
class Conv2(Conv):
"""Simplified RepConv module with Conv fusing."""
def __init__(self, c1, c2, k=3, s=1, p=None, g=1, d=1, act=True):
"""Initialize Conv layer with given arguments including activation."""
super().__init__(c1, c2, k, s, p, g=g, d=d, act=act)
self.cv2 = nn.Conv2d(c1, c2, 1, s, autopad(1, p, d), groups=g, dilation=d, bias=False) # add 1x1 conv
def forward(self, x):
"""Apply convolution, batch normalization and activation to input tensor."""
return self.act(self.bn(self.conv(x) + self.cv2(x)))
def fuse_convs(self):
"""Fuse parallel convolutions."""
w = torch.zeros_like(self.conv.weight.data)
i = [x // 2 for x in w.shape[2:]]
w[:, :, i[0] - 1:i[0], i[1] - 1:i[1]] = self.cv2.weight.data.clone()
self.conv.weight.data += w
self.__delattr__('cv2')
class LightConv(nn.Module):
"""Light convolution with args(ch_in, ch_out, kernel).
https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/backbones/hgnet_v2.py

View File

@ -8,9 +8,9 @@ import torch
import torch.nn as nn
from ultralytics.nn.modules import (AIFI, C1, C2, C3, C3TR, SPP, SPPF, Bottleneck, BottleneckCSP, C2f, C3Ghost, C3x,
Classify, Concat, Conv, ConvTranspose, Detect, DWConv, DWConvTranspose2d, Focus,
GhostBottleneck, GhostConv, HGBlock, HGStem, Pose, RepC3, RepConv, RTDETRDecoder,
Segment)
Classify, Concat, Conv, Conv2, ConvTranspose, Detect, DWConv, DWConvTranspose2d,
Focus, GhostBottleneck, GhostConv, HGBlock, HGStem, Pose, RepC3, RepConv,
RTDETRDecoder, Segment)
from ultralytics.yolo.utils import DEFAULT_CFG_DICT, DEFAULT_CFG_KEYS, LOGGER, colorstr, emojis, yaml_load
from ultralytics.yolo.utils.checks import check_requirements, check_suffix, check_yaml
from ultralytics.yolo.utils.loss import v8ClassificationLoss, v8DetectionLoss, v8PoseLoss, v8SegmentationLoss
@ -103,7 +103,9 @@ class BaseModel(nn.Module):
"""
if not self.is_fused():
for m in self.model.modules():
if isinstance(m, (Conv, DWConv)) and hasattr(m, 'bn'):
if isinstance(m, (Conv, Conv2, DWConv)) and hasattr(m, 'bn'):
if isinstance(m, Conv2):
m.fuse_convs()
m.conv = fuse_conv_and_bn(m.conv, m.bn) # update conv
delattr(m, 'bn') # remove batchnorm
m.forward = m.forward_fuse # update forward