Add v8 modules (#81)

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
single_channel
Ayush Chaurasia 2 years ago committed by GitHub
parent d198f3f9d1
commit 40f7e0806e
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -25,11 +25,8 @@ def attempt_load_weights(weights, device=None, inplace=True, fuse=True):
# Module compatibility updates # Module compatibility updates
for m in model.modules(): for m in model.modules():
t = type(m) t = type(m)
if t in (nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU, Detect): if t in (nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU, Detect, Segment):
m.inplace = inplace # torch 1.7.0 compatibility m.inplace = inplace # torch 1.7.0 compatibility
if t is Detect and not isinstance(m.anchor_grid, list):
delattr(m, 'anchor_grid')
setattr(m, 'anchor_grid', [torch.zeros(1)] * m.nl)
elif t is nn.Upsample and not hasattr(m, 'recompute_scale_factor'): elif t is nn.Upsample and not hasattr(m, 'recompute_scale_factor'):
m.recompute_scale_factor = None # torch 1.11.0 compatibility m.recompute_scale_factor = None # torch 1.11.0 compatibility
@ -65,8 +62,8 @@ def parse_model(d, ch): # model_dict, input_channels(3)
n = n_ = max(round(n * gd), 1) if n > 1 else n # depth gain n = n_ = max(round(n * gd), 1) if n > 1 else n # depth gain
if m in { if m in {
Conv, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, Focus, CrossConv, BottleneckCSP, C3, Conv, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, Focus, BottleneckCSP, C3, C3TR,
C3TR, C3SPP, C3Ghost, nn.ConvTranspose2d, DWConvTranspose2d, C3x}: C3Ghost, nn.ConvTranspose2d, DWConvTranspose2d, C3x}:
c1, c2 = ch[f], args[0] c1, c2 = ch[f], args[0]
if c2 != no: # if not output if c2 != no: # if not output
c2 = make_divisible(c2 * gw, 8) c2 = make_divisible(c2 * gw, 8)
@ -86,10 +83,6 @@ def parse_model(d, ch): # model_dict, input_channels(3)
args[1] = [list(range(args[1] * 2))] * len(f) args[1] = [list(range(args[1] * 2))] * len(f)
if m is Segment: if m is Segment:
args[3] = make_divisible(args[3] * gw, 8) args[3] = make_divisible(args[3] * gw, 8)
elif m is Contract:
c2 = ch[f] * args[0] ** 2
elif m is Expand:
c2 = ch[f] // args[0] ** 2
else: else:
c2 = ch[f] c2 = ch[f]

@ -68,6 +68,35 @@ class DWConvTranspose2d(nn.ConvTranspose2d):
super().__init__(c1, c2, k, s, p1, p2, groups=math.gcd(c1, c2)) super().__init__(c1, c2, k, s, p1, p2, groups=math.gcd(c1, c2))
class ConvTranspose(nn.Module):
# Convolution transpose 2d layer
default_act = nn.SiLU() # default activation
def __init__(self, c1, c2, k=2, s=2, p=0, bn=True, act=True):
super().__init__()
self.conv_transpose = nn.ConvTranspose2d(c1, c2, k, s, p, bias=not bn)
self.bn = nn.BatchNorm2d(c2) if bn else nn.Identity()
self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()
def forward(self, x):
return self.act(self.bn(self.conv_transpose(x)))
class DFL(nn.Module):
# DFL module
def __init__(self, c1=16):
super().__init__()
self.conv = nn.Conv2d(c1, 1, 1, bias=False).requires_grad_(False)
x = torch.arange(c1, dtype=torch.float)
self.conv.weight.data[:] = nn.Parameter(x.view(1, c1, 1, 1))
self.c1 = c1
def forward(self, x):
b, c, a = x.shape # batch, channels, anchors
return self.conv(x.view(b, 4, self.c1, a).transpose(2, 1).softmax(1)).view(b, 4, a)
# return self.conv(x.view(b, self.c1, 4, a).softmax(1)).view(b, 4, a)
class TransformerLayer(nn.Module): class TransformerLayer(nn.Module):
# Transformer layer https://arxiv.org/abs/2010.11929 (LayerNorm layers removed for better performance) # Transformer layer https://arxiv.org/abs/2010.11929 (LayerNorm layers removed for better performance)
def __init__(self, c, num_heads): def __init__(self, c, num_heads):
@ -106,11 +135,11 @@ class TransformerBlock(nn.Module):
class Bottleneck(nn.Module): class Bottleneck(nn.Module):
# Standard bottleneck # Standard bottleneck
def __init__(self, c1, c2, shortcut=True, g=1, e=0.5): # ch_in, ch_out, shortcut, groups, expansion def __init__(self, c1, c2, shortcut=True, g=1, k=(3, 3), e=0.5): # ch_in, ch_out, shortcut, kernels, groups, expand
super().__init__() super().__init__()
c_ = int(c2 * e) # hidden channels c_ = int(c2 * e) # hidden channels
self.cv1 = Conv(c1, c_, 1, 1) self.cv1 = Conv(c1, c_, k[0], 1)
self.cv2 = Conv(c_, c2, 3, 1, g=g) self.cv2 = Conv(c_, c2, k[1], 1, g=g)
self.add = shortcut and c1 == c2 self.add = shortcut and c1 == c2
def forward(self, x): def forward(self, x):
@ -136,20 +165,6 @@ class BottleneckCSP(nn.Module):
return self.cv4(self.act(self.bn(torch.cat((y1, y2), 1)))) return self.cv4(self.act(self.bn(torch.cat((y1, y2), 1))))
class CrossConv(nn.Module):
# Cross Convolution Downsample
def __init__(self, c1, c2, k=3, s=1, g=1, e=1.0, shortcut=False):
# ch_in, ch_out, kernel, stride, groups, expansion, shortcut
super().__init__()
c_ = int(c2 * e) # hidden channels
self.cv1 = Conv(c1, c_, (1, k), (1, s))
self.cv2 = Conv(c_, c2, (k, 1), (s, 1), g=g)
self.add = shortcut and c1 == c2
def forward(self, x):
return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
class C3(nn.Module): class C3(nn.Module):
# CSP Bottleneck with 3 convolutions # CSP Bottleneck with 3 convolutions
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
@ -164,12 +179,90 @@ class C3(nn.Module):
return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), 1)) return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), 1))
class C2(nn.Module):
# CSP Bottleneck with 2 convolutions
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
super().__init__()
self.c = int(c2 * e) # hidden channels
self.cv1 = Conv(c1, 2 * self.c, 1, 1)
self.cv2 = Conv(2 * self.c, c2, 1) # optional act=FReLU(c2)
# self.attention = ChannelAttention(2 * self.c) # or SpatialAttention()
self.m = nn.Sequential(*(Bottleneck(self.c, self.c, shortcut, g, k=((3, 3), (3, 3)), e=1.0) for _ in range(n)))
def forward(self, x):
a, b = self.cv1(x).split((self.c, self.c), 1)
return self.cv2(torch.cat((self.m(a), b), 1))
class C2f(nn.Module):
# CSP Bottleneck with 2 convolutions
def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
super().__init__()
self.c = int(c2 * e) # hidden channels
self.cv1 = Conv(c1, 2 * self.c, 1, 1)
self.cv2 = Conv((2 + n) * self.c, c2, 1) # optional act=FReLU(c2)
self.m = nn.ModuleList(Bottleneck(self.c, self.c, shortcut, g, k=((3, 3), (3, 3)), e=1.0) for _ in range(n))
def forward(self, x):
y = list(self.cv1(x).split((self.c, self.c), 1))
y.extend(m(y[-1]) for m in self.m)
return self.cv2(torch.cat(y, 1))
class ChannelAttention(nn.Module):
# Channel-attention module https://github.com/open-mmlab/mmdetection/tree/v3.0.0rc1/configs/rtmdet
def __init__(self, channels: int) -> None:
super().__init__()
self.pool = nn.AdaptiveAvgPool2d(1)
self.fc = nn.Conv2d(channels, channels, 1, 1, 0, bias=True)
self.act = nn.Sigmoid()
def forward(self, x: torch.Tensor) -> torch.Tensor:
return x * self.act(self.fc(self.pool(x)))
class SpatialAttention(nn.Module):
# Spatial-attention module
def __init__(self, kernel_size=7):
super().__init__()
assert kernel_size in (3, 7), 'kernel size must be 3 or 7'
padding = 3 if kernel_size == 7 else 1
self.cv1 = nn.Conv2d(2, 1, kernel_size, padding=padding, bias=False)
self.act = nn.Sigmoid()
def forward(self, x):
return x * self.act(self.cv1(torch.cat([torch.mean(x, 1, keepdim=True), torch.max(x, 1, keepdim=True)[0]], 1)))
class CBAM(nn.Module):
# CSP Bottleneck with 3 convolutions
def __init__(self, c1, ratio=16, kernel_size=7): # ch_in, ch_out, number, shortcut, groups, expansion
super().__init__()
self.channel_attention = ChannelAttention(c1)
self.spatial_attention = SpatialAttention(kernel_size)
def forward(self, x):
return self.spatial_attention(self.channel_attention(x))
class C1(nn.Module):
# CSP Bottleneck with 3 convolutions
def __init__(self, c1, c2, n=1): # ch_in, ch_out, number, shortcut, groups, expansion
super().__init__()
self.cv1 = Conv(c1, c2, 1, 1)
self.m = nn.Sequential(*(Conv(c2, c2, 3) for _ in range(n)))
def forward(self, x):
y = self.cv1(x)
return self.m(y) + y
class C3x(C3): class C3x(C3):
# C3 module with cross-convolutions # C3 module with cross-convolutions
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
super().__init__(c1, c2, n, shortcut, g, e) super().__init__(c1, c2, n, shortcut, g, e)
c_ = int(c2 * e) self.c_ = int(c2 * e)
self.m = nn.Sequential(*(CrossConv(c_, c_, 3, 1, g, 1.0, shortcut) for _ in range(n))) self.m = nn.Sequential(*(Bottleneck(self.c_, self.c_, shortcut, g, k=((1, 3), (3, 1)), e=1) for _ in range(n)))
class C3TR(C3): class C3TR(C3):
@ -180,14 +273,6 @@ class C3TR(C3):
self.m = TransformerBlock(c_, c_, 4, n) self.m = TransformerBlock(c_, c_, 4, n)
class C3SPP(C3):
# C3 module with SPP()
def __init__(self, c1, c2, k=(5, 9, 13), n=1, shortcut=True, g=1, e=0.5):
super().__init__(c1, c2, n, shortcut, g, e)
c_ = int(c2 * e)
self.m = SPP(c_, c_, k)
class C3Ghost(C3): class C3Ghost(C3):
# C3 module with GhostBottleneck() # C3 module with GhostBottleneck()
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
@ -271,34 +356,6 @@ class GhostBottleneck(nn.Module):
return self.conv(x) + self.shortcut(x) return self.conv(x) + self.shortcut(x)
class Contract(nn.Module):
# Contract width-height into channels, i.e. x(1,64,80,80) to x(1,256,40,40)
def __init__(self, gain=2):
super().__init__()
self.gain = gain
def forward(self, x):
b, c, h, w = x.size() # assert (h / s == 0) and (W / s == 0), 'Indivisible gain'
s = self.gain
x = x.view(b, c, h // s, s, w // s, s) # x(1,64,40,2,40,2)
x = x.permute(0, 3, 5, 1, 2, 4).contiguous() # x(1,2,2,64,40,40)
return x.view(b, c * s * s, h // s, w // s) # x(1,256,40,40)
class Expand(nn.Module):
# Expand channels into width-height, i.e. x(1,64,80,80) to x(1,16,160,160)
def __init__(self, gain=2):
super().__init__()
self.gain = gain
def forward(self, x):
b, c, h, w = x.size() # assert C / s ** 2 == 0, 'Indivisible gain'
s = self.gain
x = x.view(b, s, s, c // s ** 2, h, w) # x(1,2,2,16,80,80)
x = x.permute(0, 3, 4, 1, 5, 2).contiguous() # x(1,16,80,2,80,2)
return x.view(b, c // s ** 2, h * s, w * s) # x(1,16,160,160)
class Concat(nn.Module): class Concat(nn.Module):
# Concatenate a list of tensors along dimension # Concatenate a list of tensors along dimension
def __init__(self, dimension=1): def __init__(self, dimension=1):

Loading…
Cancel
Save