update segment training (#57)

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: ayush chaurasia <ayush.chaurarsia@gmail.com>
This commit is contained in:
Laughing
2022-11-29 05:30:08 -06:00
committed by GitHub
parent d0b0fe2592
commit 3a241e4cea
14 changed files with 460 additions and 144 deletions

View File

@ -24,11 +24,11 @@ from tqdm import tqdm
import ultralytics.yolo.utils as utils
import ultralytics.yolo.utils.callbacks as callbacks
from ultralytics.yolo.data.utils import check_dataset, check_dataset_yaml
from ultralytics.yolo.utils import LOGGER, ROOT, TQDM_BAR_FORMAT
from ultralytics.yolo.utils import LOGGER, ROOT, TQDM_BAR_FORMAT, colorstr
from ultralytics.yolo.utils.checks import print_args
from ultralytics.yolo.utils.files import increment_path, save_yaml
from ultralytics.yolo.utils.modeling import get_model
from ultralytics.yolo.utils.torch_utils import ModelEMA, de_parallel, init_seeds, one_cycle
from ultralytics.yolo.utils.torch_utils import ModelEMA, de_parallel, init_seeds, one_cycle, strip_optimizer
DEFAULT_CONFIG = ROOT / "yolo/utils/configs/default.yaml"
RANK = int(os.getenv('RANK', -1))
@ -48,13 +48,15 @@ class BaseTrainer:
self.wdir = self.save_dir / 'weights' # weights dir
self.wdir.mkdir(parents=True, exist_ok=True) # make dir
self.last, self.best = self.wdir / 'last.pt', self.wdir / 'best.pt' # checkpoint paths
self.batch_size = self.args.batch_size
self.epochs = self.args.epochs
print_args(dict(self.args))
# Save run settings
save_yaml(self.save_dir / 'args.yaml', OmegaConf.to_container(self.args, resolve=True))
# device
self.device = utils.torch_utils.select_device(self.args.device, self.args.batch_size)
self.device = utils.torch_utils.select_device(self.args.device, self.batch_size)
self.scaler = amp.GradScaler(enabled=self.device.type != 'cpu')
# Model and Dataloaders.
@ -73,10 +75,11 @@ class BaseTrainer:
self.scheduler = None
# epoch level metrics
self.metrics = {} # handle metrics returned by validator
self.best_fitness = None
self.fitness = None
self.loss = None
self.tloss = None
self.csv = self.save_dir / 'results.csv'
for callback, func in callbacks.default_callbacks.items():
self.add_callback(callback, func)
@ -122,6 +125,7 @@ class BaseTrainer:
if world_size > 1:
mp.spawn(self._do_train, args=(world_size,), nprocs=world_size, join=True)
else:
# self._do_train(int(os.getenv("RANK", -1)), world_size)
self._do_train()
def _setup_ddp(self, rank, world_size):
@ -129,21 +133,20 @@ class BaseTrainer:
os.environ['MASTER_PORT'] = '9020'
torch.cuda.set_device(rank)
self.device = torch.device('cuda', rank)
print(f"RANK - WORLD_SIZE - DEVICE: {rank} - {world_size} - {self.device} ")
self.console.info(f"RANK - WORLD_SIZE - DEVICE: {rank} - {world_size} - {self.device} ")
dist.init_process_group("nccl" if dist.is_nccl_available() else "gloo", rank=rank, world_size=world_size)
self.model = self.model.to(self.device)
self.model = DDP(self.model, device_ids=[rank])
self.args.batch_size = self.args.batch_size // world_size
def _setup_train(self, rank):
def _setup_train(self, rank, world_size):
"""
Builds dataloaders and optimizer on correct rank process
"""
# Optimizer
self.set_model_attributes()
accumulate = max(round(self.args.nbs / self.args.batch_size), 1) # accumulate loss before optimizing
self.args.weight_decay *= self.args.batch_size * accumulate / self.args.nbs # scale weight_decay
self.accumulate = max(round(self.args.nbs / self.batch_size), 1) # accumulate loss before optimizing
self.args.weight_decay *= self.batch_size * self.accumulate / self.args.nbs # scale weight_decay
self.optimizer = build_optimizer(model=self.model,
name=self.args.optimizer,
lr=self.args.lr0,
@ -151,18 +154,21 @@ class BaseTrainer:
decay=self.args.weight_decay)
# Scheduler
if self.args.cos_lr:
self.lf = one_cycle(1, self.args.lrf, self.args.epochs) # cosine 1->hyp['lrf']
self.lf = one_cycle(1, self.args.lrf, self.epochs) # cosine 1->hyp['lrf']
else:
self.lf = lambda x: (1 - x / self.args.epochs) * (1.0 - self.args.lrf + self.args.lrf) # linear
self.lf = lambda x: (1 - x / self.epochs) * (1.0 - self.args.lrf) + self.args.lrf # linear
self.scheduler = lr_scheduler.LambdaLR(self.optimizer, lr_lambda=self.lf)
# dataloaders
self.train_loader = self.get_dataloader(self.trainset, batch_size=self.args.batch_size, rank=rank)
batch_size = self.batch_size // world_size
self.train_loader = self.get_dataloader(self.trainset, batch_size=batch_size, rank=rank, mode="train")
if rank in {0, -1}:
print(" Creating testloader rank :", rank)
self.test_loader = self.get_dataloader(self.testset, batch_size=self.args.batch_size * 2, rank=-1)
self.validator = self.get_validator()
print("created testloader :", rank)
self.test_loader = self.get_dataloader(self.testset, batch_size=batch_size * 2, rank=-1, mode="val")
validator = self.get_validator()
# init metric, for plot_results
metric_keys = validator.metric_keys + self.label_loss_items(prefix="val")
self.metrics = dict(zip(metric_keys, [0] * len(metric_keys)))
self.validator = validator
self.ema = ModelEMA(self.model)
def _do_train(self, rank=-1, world_size=1):
@ -172,7 +178,7 @@ class BaseTrainer:
self.model = self.model.to(self.device)
self.trigger_callbacks("before_train")
self._setup_train(rank)
self._setup_train(rank, world_size)
self.epoch = 0
self.epoch_time = None
@ -181,13 +187,17 @@ class BaseTrainer:
nb = len(self.train_loader) # number of batches
nw = max(round(self.args.warmup_epochs * nb), 100) # number of warmup iterations
last_opt_step = -1
for epoch in range(self.args.epochs):
for epoch in range(self.epochs):
self.trigger_callbacks("on_epoch_start")
self.model.train()
if rank != -1:
self.train_loader.sampler.set_epoch(epoch)
pbar = enumerate(self.train_loader)
if rank in {-1, 0}:
self.console.info(self.progress_string())
pbar = tqdm(enumerate(self.train_loader), total=len(self.train_loader), bar_format=TQDM_BAR_FORMAT)
self.tloss = None
self.optimizer.zero_grad()
for i, batch in pbar:
self.trigger_callbacks("on_batch_start")
# forward
@ -197,7 +207,7 @@ class BaseTrainer:
ni = i + nb * epoch
if ni <= nw:
xi = [0, nw] # x interp
accumulate = max(1, np.interp(ni, xi, [1, self.args.nbs / self.args.batch_size]).round())
self.accumulate = max(1, np.interp(ni, xi, [1, self.args.nbs / self.batch_size]).round())
for j, x in enumerate(self.optimizer.param_groups):
# bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
x['lr'] = np.interp(
@ -207,37 +217,47 @@ class BaseTrainer:
preds = self.model(batch["img"])
self.loss, self.loss_items = self.criterion(preds, batch)
if rank != -1:
self.loss *= world_size
self.tloss = (self.tloss * i + self.loss_items) / (i + 1) if self.tloss is not None \
else self.loss_items
# backward
self.model.zero_grad(set_to_none=True)
self.scaler.scale(self.loss).backward()
# optimize
if ni - last_opt_step >= accumulate:
if ni - last_opt_step >= self.accumulate:
self.optimizer_step()
last_opt_step = ni
# log
mem = (torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0) # (GB)
mem = f'{torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0:.3g}G' # (GB)
loss_len = self.tloss.shape[0] if len(self.tloss.size()) else 1
losses = self.tloss if loss_len > 1 else torch.unsqueeze(self.tloss, 0)
if rank in {-1, 0}:
pbar.set_description(
(" {} " + "{:.3f} " * (1 + loss_len) + ' {} ').format(f'{epoch + 1}/{self.args.epochs}', mem,
*losses, batch["img"].shape[-1]))
('%11s' * 2 + '%11.4g' * (2 + loss_len)) %
(f'{epoch + 1}/{self.epochs}', mem, *losses, batch["cls"].shape[0], batch["img"].shape[-1]))
self.trigger_callbacks('on_batch_end')
if self.args.plots and ni < 3:
self.plot_training_samples(batch, ni)
lr = {f"lr{ir}": x['lr'] for ir, x in enumerate(self.optimizer.param_groups)} # for loggers
self.scheduler.step()
if rank in [-1, 0]:
# validation
self.trigger_callbacks('on_val_start')
self.ema.update_attr(self.model, include=['yaml', 'nc', 'args', 'names', 'stride', 'class_weights'])
self.metrics, self.fitness = self.validate()
final_epoch = (epoch + 1 == self.epochs)
if not self.args.noval or final_epoch:
self.metrics, self.fitness = self.validate()
self.trigger_callbacks('on_val_end')
log_vals = self.label_loss_items(self.tloss) | self.metrics | lr
self.save_metrics(metrics=log_vals)
# save model
if (not self.args.nosave) or (self.epoch + 1 == self.args.epochs):
if (not self.args.nosave) or (self.epoch + 1 == self.epochs):
self.save_model()
self.trigger_callbacks('on_model_save')
@ -248,9 +268,15 @@ class BaseTrainer:
# TODO: termination condition
self.log(f"\nTraining complete ({(time.time() - self.train_time_start) / 3600:.3f} hours)")
self.trigger_callbacks('on_train_end')
if rank in [-1, 0]:
# do the last evaluation with best.pt
self.final_eval()
if self.args.plots:
self.plot_metrics()
self.log(f"\nTraining complete ({(time.time() - self.train_time_start) / 3600:.3f} hours)")
self.trigger_callbacks('on_train_end')
dist.destroy_process_group() if world_size != 1 else None
torch.cuda.empty_cache()
def save_model(self):
ckpt = {
@ -306,7 +332,7 @@ class BaseTrainer:
"fitness" metric.
"""
metrics = self.validator(self)
fitness = metrics.get("fitness", -self.loss.detach().cpu().numpy()) # use loss as fitness measure if not found
fitness = metrics.pop("fitness", -self.loss.detach().cpu().numpy()) # use loss as fitness measure if not found
if not self.best_fitness or self.best_fitness < fitness:
self.best_fitness = self.fitness
return metrics, fitness
@ -339,12 +365,12 @@ class BaseTrainer:
"""
raise NotImplementedError("criterion function not implemented in trainer")
def label_loss_items(self, loss_items):
def label_loss_items(self, loss_items=None, prefix="train"):
"""
Returns a loss dict with labelled training loss items tensor
"""
# Not needed for classification but necessary for segmentation & detection
return {"loss": loss_items}
return {"loss": loss_items} if loss_items is not None else ["loss"]
def set_model_attributes(self):
"""
@ -355,6 +381,31 @@ class BaseTrainer:
def build_targets(self, preds, targets):
pass
def progress_string(self):
return ""
# TODO: may need to put these following functions into callback
def plot_training_samples(self, batch, ni):
pass
def save_metrics(self, metrics):
keys, vals = list(metrics.keys()), list(metrics.values())
n = len(metrics) + 1 # number of cols
s = '' if self.csv.exists() else (('%23s,' * n % tuple(['epoch'] + keys)).rstrip(',') + '\n') # header
with open(self.csv, 'a') as f:
f.write(s + ('%23.5g,' * n % tuple([self.epoch] + vals)).rstrip(',') + '\n')
def plot_metrics(self):
pass
def final_eval(self):
# TODO: need standalone evaluator to do this
for f in self.last, self.best:
if f.exists():
strip_optimizer(f) # strip optimizers
if f is self.best:
self.console.info(f'\nValidating {f}...')
def build_optimizer(model, name='Adam', lr=0.001, momentum=0.9, decay=1e-5):
# TODO: 1. docstring with example? 2. Move this inside Trainer? or utils?
@ -382,7 +433,7 @@ def build_optimizer(model, name='Adam', lr=0.001, momentum=0.9, decay=1e-5):
optimizer.add_param_group({'params': g[0], 'weight_decay': decay}) # add g0 with weight_decay
optimizer.add_param_group({'params': g[1], 'weight_decay': 0.0}) # add g1 (BatchNorm2d weights)
LOGGER.info(f"optimizer: {type(optimizer).__name__}(lr={lr}) with parameter groups "
LOGGER.info(f"{colorstr('optimizer:')} {type(optimizer).__name__}(lr={lr}) with parameter groups "
f"{len(g[1])} weight(decay=0.0), {len(g[0])} weight(decay={decay}), {len(g[2])} bias")
return optimizer

View File

@ -1,4 +1,5 @@
import logging
from pathlib import Path
import torch
from omegaconf import OmegaConf
@ -6,6 +7,7 @@ from tqdm import tqdm
from ultralytics.yolo.engine.trainer import DEFAULT_CONFIG
from ultralytics.yolo.utils import TQDM_BAR_FORMAT
from ultralytics.yolo.utils.files import increment_path
from ultralytics.yolo.utils.ops import Profile
from ultralytics.yolo.utils.torch_utils import de_parallel, select_device
@ -15,16 +17,17 @@ class BaseValidator:
Base validator class.
"""
def __init__(self, dataloader, pbar=None, logger=None, args=None):
def __init__(self, dataloader, save_dir=None, pbar=None, logger=None, args=None):
self.dataloader = dataloader
self.pbar = pbar
self.logger = logger or logging.getLogger()
self.args = args or OmegaConf.load(DEFAULT_CONFIG)
self.device = select_device(self.args.device, dataloader.batch_size)
self.save_dir = save_dir if save_dir is not None else \
increment_path(Path(self.args.project) / self.args.name, exist_ok=self.args.exist_ok)
self.cuda = self.device.type != 'cpu'
self.batch_i = None
self.training = True
self.loss = None
def __call__(self, trainer=None, model=None):
"""
@ -35,20 +38,22 @@ class BaseValidator:
if self.training:
model = trainer.ema.ema or trainer.model
self.args.half &= self.device.type != 'cpu'
# NOTE: half() inference in evaluation will make training stuck,
# so I comment it out for now, I think we can reuse half mode after we add EMA.
model = model.half() if self.args.half else model.float()
loss = torch.zeros_like(trainer.loss_items, device=trainer.device)
else: # TODO: handle this when detectMultiBackend is supported
assert model is not None, "Either trainer or model is needed for validation"
# model = DetectMultiBacked(model)
# TODO: implement init_model_attributes()
model.eval()
dt = Profile(), Profile(), Profile(), Profile()
self.loss = 0
n_batches = len(self.dataloader)
desc = self.get_desc()
bar = tqdm(self.dataloader, desc, n_batches, not self.training, bar_format=TQDM_BAR_FORMAT)
# NOTE: keeping this `not self.training` in tqdm will eliminate pbar after finishing segmantation evaluation during training,
# so I removed it, not sure if this will affect classification task cause I saw we use this arg in yolov5/classify/val.py.
# bar = tqdm(self.dataloader, desc, n_batches, not self.training, bar_format=TQDM_BAR_FORMAT)
bar = tqdm(self.dataloader, desc, n_batches, bar_format=TQDM_BAR_FORMAT)
self.init_metrics(de_parallel(model))
with torch.no_grad():
for batch_i, batch in enumerate(bar):
@ -59,20 +64,23 @@ class BaseValidator:
# inference
with dt[1]:
preds = model(batch["img"].float())
preds = model(batch["img"])
# TODO: remember to add native augmentation support when implementing model, like:
# preds, train_out = model(im, augment=augment)
# loss
with dt[2]:
if self.training:
self.loss += trainer.criterion(preds, batch)[0]
loss += trainer.criterion(preds, batch)[1]
# pre-process predictions
with dt[3]:
preds = self.postprocess(preds)
self.update_metrics(preds, batch)
if self.args.plots and batch_i < 3:
self.plot_val_samples(batch, batch_i)
self.plot_predictions(batch, preds, batch_i)
stats = self.get_stats()
self.check_stats(stats)
@ -81,7 +89,7 @@ class BaseValidator:
# print speeds
if not self.training:
t = tuple(x.t / len(self.dataloader.dataset.samples) * 1E3 for x in dt) # speeds per image
t = tuple(x.t / len(self.dataloader.dataset) * 1E3 for x in dt) # speeds per image
# shape = (self.dataloader.batch_size, 3, imgsz, imgsz)
self.logger.info(
'Speed: %.1fms pre-process, %.1fms inference, %.1fms loss, %.1fms post-process per image at shape ' % t)
@ -90,7 +98,8 @@ class BaseValidator:
model.float()
# TODO: implement save json
return stats
return stats | trainer.label_loss_items(loss.cpu() / len(self.dataloader), prefix="val") \
if self.training else stats
def preprocess(self, batch):
return batch
@ -105,7 +114,7 @@ class BaseValidator:
pass
def get_stats(self):
pass
return {}
def check_stats(self, stats):
pass
@ -115,3 +124,14 @@ class BaseValidator:
def get_desc(self):
pass
@property
def metric_keys(self):
return []
# TODO: may need to put these following functions into callback
def plot_val_samples(self, batch, ni):
pass
def plot_predictions(self, batch, preds, ni):
pass