Docs updates for HUB, YOLOv4, YOLOv7, NAS (#3174)
Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
@ -1,6 +1,7 @@
|
||||
---
|
||||
comments: true
|
||||
description: Check YOLO class label with only one class for the whole image, using image classification. Get strategies for training and validation models.
|
||||
keywords: YOLOv8n-cls, image classification, pretrained models
|
||||
---
|
||||
|
||||
Image classification is the simplest of the three tasks and involves classifying an entire image into one of a set of
|
||||
@ -176,4 +177,4 @@ i.e. `yolo predict model=yolov8n-cls.onnx`. Usage examples are shown for your mo
|
||||
| [TF.js](https://www.tensorflow.org/js) | `tfjs` | `yolov8n-cls_web_model/` | ✅ | `imgsz` |
|
||||
| [PaddlePaddle](https://github.com/PaddlePaddle) | `paddle` | `yolov8n-cls_paddle_model/` | ✅ | `imgsz` |
|
||||
|
||||
See full `export` details in the [Export](https://docs.ultralytics.com/modes/export/) page.
|
||||
See full `export` details in the [Export](https://docs.ultralytics.com/modes/export/) page.
|
@ -1,6 +1,7 @@
|
||||
---
|
||||
comments: true
|
||||
description: Learn how to use YOLOv8, an object detection model pre-trained with COCO and about the different YOLOv8 models and how to train and export them.
|
||||
keywords: object detection, YOLOv8 Detect models, COCO dataset, models, train, predict, export
|
||||
---
|
||||
|
||||
Object detection is a task that involves identifying the location and class of objects in an image or video stream.
|
||||
@ -167,4 +168,4 @@ Available YOLOv8 export formats are in the table below. You can predict or valid
|
||||
| [TF.js](https://www.tensorflow.org/js) | `tfjs` | `yolov8n_web_model/` | ✅ | `imgsz` |
|
||||
| [PaddlePaddle](https://github.com/PaddlePaddle) | `paddle` | `yolov8n_paddle_model/` | ✅ | `imgsz` |
|
||||
|
||||
See full `export` details in the [Export](https://docs.ultralytics.com/modes/export/) page.
|
||||
See full `export` details in the [Export](https://docs.ultralytics.com/modes/export/) page.
|
@ -1,6 +1,7 @@
|
||||
---
|
||||
comments: true
|
||||
description: Learn how Ultralytics YOLOv8 AI framework supports detection, segmentation, classification, and pose/keypoint estimation tasks.
|
||||
keywords: YOLOv8, computer vision, detection, segmentation, classification, pose, keypoint detection, image segmentation, medical imaging
|
||||
---
|
||||
|
||||
# Ultralytics YOLOv8 Tasks
|
||||
|
@ -1,6 +1,7 @@
|
||||
---
|
||||
comments: true
|
||||
description: Learn how to use YOLOv8 pose estimation models to identify the position of keypoints on objects in an image, and how to train, validate, predict, and export these models for use with various formats such as ONNX or CoreML.
|
||||
keywords: YOLOv8, Pose Models, Keypoint Detection, COCO dataset, COCO val2017, Amazon EC2 P4d, PyTorch
|
||||
---
|
||||
|
||||
Pose estimation is a task that involves identifying the location of specific points in an image, usually referred
|
||||
@ -181,4 +182,4 @@ i.e. `yolo predict model=yolov8n-pose.onnx`. Usage examples are shown for your m
|
||||
| [TF.js](https://www.tensorflow.org/js) | `tfjs` | `yolov8n-pose_web_model/` | ✅ | `imgsz` |
|
||||
| [PaddlePaddle](https://github.com/PaddlePaddle) | `paddle` | `yolov8n-pose_paddle_model/` | ✅ | `imgsz` |
|
||||
|
||||
See full `export` details in the [Export](https://docs.ultralytics.com/modes/export/) page.
|
||||
See full `export` details in the [Export](https://docs.ultralytics.com/modes/export/) page.
|
@ -1,6 +1,7 @@
|
||||
---
|
||||
comments: true
|
||||
description: Learn what Instance segmentation is. Get pretrained YOLOv8 segment models, and how to train and export them to segments masks. Check the preformance metrics!
|
||||
keywords: instance segmentation, YOLOv8, Ultralytics, pretrained models, train, predict, export, datasets
|
||||
---
|
||||
|
||||
Instance segmentation goes a step further than object detection and involves identifying individual objects in an image
|
||||
@ -181,4 +182,4 @@ i.e. `yolo predict model=yolov8n-seg.onnx`. Usage examples are shown for your mo
|
||||
| [TF.js](https://www.tensorflow.org/js) | `tfjs` | `yolov8n-seg_web_model/` | ✅ | `imgsz` |
|
||||
| [PaddlePaddle](https://github.com/PaddlePaddle) | `paddle` | `yolov8n-seg_paddle_model/` | ✅ | `imgsz` |
|
||||
|
||||
See full `export` details in the [Export](https://docs.ultralytics.com/modes/export/) page.
|
||||
See full `export` details in the [Export](https://docs.ultralytics.com/modes/export/) page.
|
Reference in New Issue
Block a user