Docs updates for HUB, YOLOv4, YOLOv7, NAS (#3174)
Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
@ -1,5 +1,6 @@
|
||||
---
|
||||
description: Ensure class names match filenames for easy imports. Use AutoBackend to automatically rename and refactor model files.
|
||||
keywords: AutoBackend, ultralytics, nn, autobackend, check class names, neural network
|
||||
---
|
||||
|
||||
# AutoBackend
|
||||
@ -10,4 +11,4 @@ description: Ensure class names match filenames for easy imports. Use AutoBacken
|
||||
# check_class_names
|
||||
---
|
||||
:::ultralytics.nn.autobackend.check_class_names
|
||||
<br><br>
|
||||
<br><br>
|
@ -1,5 +1,6 @@
|
||||
---
|
||||
description: Detect 80+ object categories with bounding box coordinates and class probabilities using AutoShape in Ultralytics YOLO. Explore Detections now.
|
||||
keywords: Ultralytics, YOLO, docs, autoshape, detections, object detection, customized shapes, bounding boxes, computer vision
|
||||
---
|
||||
|
||||
# AutoShape
|
||||
@ -10,4 +11,4 @@ description: Detect 80+ object categories with bounding box coordinates and clas
|
||||
# Detections
|
||||
---
|
||||
:::ultralytics.nn.autoshape.Detections
|
||||
<br><br>
|
||||
<br><br>
|
@ -1,5 +1,6 @@
|
||||
---
|
||||
description: Explore ultralytics.nn.modules.block to build powerful YOLO object detection models. Master DFL, HGStem, SPP, CSP components and more.
|
||||
keywords: Ultralytics, NN Modules, Blocks, DFL, HGStem, SPP, C1, C2f, C3x, C3TR, GhostBottleneck, BottleneckCSP, Computer Vision
|
||||
---
|
||||
|
||||
# DFL
|
||||
@ -85,4 +86,4 @@ description: Explore ultralytics.nn.modules.block to build powerful YOLO object
|
||||
# BottleneckCSP
|
||||
---
|
||||
:::ultralytics.nn.modules.block.BottleneckCSP
|
||||
<br><br>
|
||||
<br><br>
|
@ -1,5 +1,6 @@
|
||||
---
|
||||
description: Explore convolutional neural network modules & techniques such as LightConv, DWConv, ConvTranspose, GhostConv, CBAM & autopad with Ultralytics Docs.
|
||||
keywords: Ultralytics, Convolutional Neural Network, Conv2, DWConv, ConvTranspose, GhostConv, ChannelAttention, CBAM, autopad
|
||||
---
|
||||
|
||||
# Conv
|
||||
@ -70,4 +71,4 @@ description: Explore convolutional neural network modules & techniques such as L
|
||||
# autopad
|
||||
---
|
||||
:::ultralytics.nn.modules.conv.autopad
|
||||
<br><br>
|
||||
<br><br>
|
@ -1,5 +1,6 @@
|
||||
---
|
||||
description: 'Learn about Ultralytics YOLO modules: Segment, Classify, and RTDETRDecoder. Optimize object detection and classification in your project.'
|
||||
keywords: Ultralytics, YOLO, object detection, pose estimation, RTDETRDecoder, modules, classes, documentation
|
||||
---
|
||||
|
||||
# Detect
|
||||
@ -25,4 +26,4 @@ description: 'Learn about Ultralytics YOLO modules: Segment, Classify, and RTDET
|
||||
# RTDETRDecoder
|
||||
---
|
||||
:::ultralytics.nn.modules.head.RTDETRDecoder
|
||||
<br><br>
|
||||
<br><br>
|
@ -1,5 +1,6 @@
|
||||
---
|
||||
description: Explore the Ultralytics nn modules pages on Transformer and MLP blocks, LayerNorm2d, and Deformable Transformer Decoder Layer.
|
||||
keywords: Ultralytics, NN Modules, TransformerEncoderLayer, TransformerLayer, MLPBlock, LayerNorm2d, DeformableTransformerDecoderLayer, examples, code snippets, tutorials
|
||||
---
|
||||
|
||||
# TransformerEncoderLayer
|
||||
@ -50,4 +51,4 @@ description: Explore the Ultralytics nn modules pages on Transformer and MLP blo
|
||||
# DeformableTransformerDecoder
|
||||
---
|
||||
:::ultralytics.nn.modules.transformer.DeformableTransformerDecoder
|
||||
<br><br>
|
||||
<br><br>
|
@ -1,5 +1,6 @@
|
||||
---
|
||||
description: 'Learn about Ultralytics NN modules: get_clones, linear_init_, and multi_scale_deformable_attn_pytorch. Code examples and usage tips.'
|
||||
keywords: Ultralytics, NN Utils, Docs, PyTorch, bias initialization, linear initialization, multi-scale deformable attention
|
||||
---
|
||||
|
||||
# _get_clones
|
||||
@ -25,4 +26,4 @@ description: 'Learn about Ultralytics NN modules: get_clones, linear_init_, and
|
||||
# multi_scale_deformable_attn_pytorch
|
||||
---
|
||||
:::ultralytics.nn.modules.utils.multi_scale_deformable_attn_pytorch
|
||||
<br><br>
|
||||
<br><br>
|
@ -1,5 +1,6 @@
|
||||
---
|
||||
description: Learn how to work with Ultralytics YOLO Detection, Segmentation & Classification Models, load weights and parse models in PyTorch.
|
||||
keywords: neural network, deep learning, computer vision, object detection, image segmentation, image classification, model ensemble, PyTorch
|
||||
---
|
||||
|
||||
# BaseModel
|
||||
@ -70,4 +71,4 @@ description: Learn how to work with Ultralytics YOLO Detection, Segmentation & C
|
||||
# guess_model_task
|
||||
---
|
||||
:::ultralytics.nn.tasks.guess_model_task
|
||||
<br><br>
|
||||
<br><br>
|
Reference in New Issue
Block a user