Docs updates for HUB, YOLOv4, YOLOv7, NAS (#3174)
Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
@ -1,8 +1,9 @@
|
||||
---
|
||||
description: Learn how to use Ultralytics hub authentication in your projects with examples and guidelines from the Auth page on Ultralytics Docs.
|
||||
keywords: Ultralytics, ultralytics hub, api keys, authentication, collab accounts, requests, hub management, monitoring
|
||||
---
|
||||
|
||||
# Auth
|
||||
---
|
||||
:::ultralytics.hub.auth.Auth
|
||||
<br><br>
|
||||
<br><br>
|
@ -1,8 +1,9 @@
|
||||
---
|
||||
description: Accelerate your AI development with the Ultralytics HUB Training Session. High-performance training of object detection models.
|
||||
keywords: YOLOv5, object detection, HUBTrainingSession, custom models, Ultralytics Docs
|
||||
---
|
||||
|
||||
# HUBTrainingSession
|
||||
---
|
||||
:::ultralytics.hub.session.HUBTrainingSession
|
||||
<br><br>
|
||||
<br><br>
|
@ -1,5 +1,6 @@
|
||||
---
|
||||
description: Explore Ultralytics events, including 'request_with_credentials' and 'smart_request', to improve your project's performance and efficiency.
|
||||
keywords: Ultralytics, Hub Utils, API Documentation, Python, requests_with_progress, Events, classes, usage, examples
|
||||
---
|
||||
|
||||
# Events
|
||||
@ -20,4 +21,4 @@ description: Explore Ultralytics events, including 'request_with_credentials' an
|
||||
# smart_request
|
||||
---
|
||||
:::ultralytics.hub.utils.smart_request
|
||||
<br><br>
|
||||
<br><br>
|
@ -1,5 +1,6 @@
|
||||
---
|
||||
description: Ensure class names match filenames for easy imports. Use AutoBackend to automatically rename and refactor model files.
|
||||
keywords: AutoBackend, ultralytics, nn, autobackend, check class names, neural network
|
||||
---
|
||||
|
||||
# AutoBackend
|
||||
@ -10,4 +11,4 @@ description: Ensure class names match filenames for easy imports. Use AutoBacken
|
||||
# check_class_names
|
||||
---
|
||||
:::ultralytics.nn.autobackend.check_class_names
|
||||
<br><br>
|
||||
<br><br>
|
@ -1,5 +1,6 @@
|
||||
---
|
||||
description: Detect 80+ object categories with bounding box coordinates and class probabilities using AutoShape in Ultralytics YOLO. Explore Detections now.
|
||||
keywords: Ultralytics, YOLO, docs, autoshape, detections, object detection, customized shapes, bounding boxes, computer vision
|
||||
---
|
||||
|
||||
# AutoShape
|
||||
@ -10,4 +11,4 @@ description: Detect 80+ object categories with bounding box coordinates and clas
|
||||
# Detections
|
||||
---
|
||||
:::ultralytics.nn.autoshape.Detections
|
||||
<br><br>
|
||||
<br><br>
|
@ -1,5 +1,6 @@
|
||||
---
|
||||
description: Explore ultralytics.nn.modules.block to build powerful YOLO object detection models. Master DFL, HGStem, SPP, CSP components and more.
|
||||
keywords: Ultralytics, NN Modules, Blocks, DFL, HGStem, SPP, C1, C2f, C3x, C3TR, GhostBottleneck, BottleneckCSP, Computer Vision
|
||||
---
|
||||
|
||||
# DFL
|
||||
@ -85,4 +86,4 @@ description: Explore ultralytics.nn.modules.block to build powerful YOLO object
|
||||
# BottleneckCSP
|
||||
---
|
||||
:::ultralytics.nn.modules.block.BottleneckCSP
|
||||
<br><br>
|
||||
<br><br>
|
@ -1,5 +1,6 @@
|
||||
---
|
||||
description: Explore convolutional neural network modules & techniques such as LightConv, DWConv, ConvTranspose, GhostConv, CBAM & autopad with Ultralytics Docs.
|
||||
keywords: Ultralytics, Convolutional Neural Network, Conv2, DWConv, ConvTranspose, GhostConv, ChannelAttention, CBAM, autopad
|
||||
---
|
||||
|
||||
# Conv
|
||||
@ -70,4 +71,4 @@ description: Explore convolutional neural network modules & techniques such as L
|
||||
# autopad
|
||||
---
|
||||
:::ultralytics.nn.modules.conv.autopad
|
||||
<br><br>
|
||||
<br><br>
|
@ -1,5 +1,6 @@
|
||||
---
|
||||
description: 'Learn about Ultralytics YOLO modules: Segment, Classify, and RTDETRDecoder. Optimize object detection and classification in your project.'
|
||||
keywords: Ultralytics, YOLO, object detection, pose estimation, RTDETRDecoder, modules, classes, documentation
|
||||
---
|
||||
|
||||
# Detect
|
||||
@ -25,4 +26,4 @@ description: 'Learn about Ultralytics YOLO modules: Segment, Classify, and RTDET
|
||||
# RTDETRDecoder
|
||||
---
|
||||
:::ultralytics.nn.modules.head.RTDETRDecoder
|
||||
<br><br>
|
||||
<br><br>
|
@ -1,5 +1,6 @@
|
||||
---
|
||||
description: Explore the Ultralytics nn modules pages on Transformer and MLP blocks, LayerNorm2d, and Deformable Transformer Decoder Layer.
|
||||
keywords: Ultralytics, NN Modules, TransformerEncoderLayer, TransformerLayer, MLPBlock, LayerNorm2d, DeformableTransformerDecoderLayer, examples, code snippets, tutorials
|
||||
---
|
||||
|
||||
# TransformerEncoderLayer
|
||||
@ -50,4 +51,4 @@ description: Explore the Ultralytics nn modules pages on Transformer and MLP blo
|
||||
# DeformableTransformerDecoder
|
||||
---
|
||||
:::ultralytics.nn.modules.transformer.DeformableTransformerDecoder
|
||||
<br><br>
|
||||
<br><br>
|
@ -1,5 +1,6 @@
|
||||
---
|
||||
description: 'Learn about Ultralytics NN modules: get_clones, linear_init_, and multi_scale_deformable_attn_pytorch. Code examples and usage tips.'
|
||||
keywords: Ultralytics, NN Utils, Docs, PyTorch, bias initialization, linear initialization, multi-scale deformable attention
|
||||
---
|
||||
|
||||
# _get_clones
|
||||
@ -25,4 +26,4 @@ description: 'Learn about Ultralytics NN modules: get_clones, linear_init_, and
|
||||
# multi_scale_deformable_attn_pytorch
|
||||
---
|
||||
:::ultralytics.nn.modules.utils.multi_scale_deformable_attn_pytorch
|
||||
<br><br>
|
||||
<br><br>
|
@ -1,5 +1,6 @@
|
||||
---
|
||||
description: Learn how to work with Ultralytics YOLO Detection, Segmentation & Classification Models, load weights and parse models in PyTorch.
|
||||
keywords: neural network, deep learning, computer vision, object detection, image segmentation, image classification, model ensemble, PyTorch
|
||||
---
|
||||
|
||||
# BaseModel
|
||||
@ -70,4 +71,4 @@ description: Learn how to work with Ultralytics YOLO Detection, Segmentation & C
|
||||
# guess_model_task
|
||||
---
|
||||
:::ultralytics.nn.tasks.guess_model_task
|
||||
<br><br>
|
||||
<br><br>
|
@ -1,5 +1,6 @@
|
||||
---
|
||||
description: Learn how to register custom event-tracking and track predictions with Ultralytics YOLO via on_predict_start and register_tracker methods.
|
||||
keywords: Ultralytics YOLO, tracker registration, on_predict_start, object detection
|
||||
---
|
||||
|
||||
# on_predict_start
|
||||
@ -15,4 +16,4 @@ description: Learn how to register custom event-tracking and track predictions w
|
||||
# register_tracker
|
||||
---
|
||||
:::ultralytics.tracker.track.register_tracker
|
||||
<br><br>
|
||||
<br><br>
|
@ -1,5 +1,6 @@
|
||||
---
|
||||
description: 'TrackState: A comprehensive guide to Ultralytics tracker''s BaseTrack for monitoring model performance. Improve your tracking capabilities now!'
|
||||
keywords: object detection, object tracking, Ultralytics YOLO, TrackState, workflow improvement
|
||||
---
|
||||
|
||||
# TrackState
|
||||
@ -10,4 +11,4 @@ description: 'TrackState: A comprehensive guide to Ultralytics tracker''s BaseTr
|
||||
# BaseTrack
|
||||
---
|
||||
:::ultralytics.tracker.trackers.basetrack.BaseTrack
|
||||
<br><br>
|
||||
<br><br>
|
@ -1,5 +1,6 @@
|
||||
---
|
||||
description: '"Optimize tracking with Ultralytics BOTrack. Easily sort and track bots with BOTSORT. Streamline data collection for improved performance."'
|
||||
keywords: BOTrack, Ultralytics YOLO Docs, features, usage
|
||||
---
|
||||
|
||||
# BOTrack
|
||||
@ -10,4 +11,4 @@ description: '"Optimize tracking with Ultralytics BOTrack. Easily sort and track
|
||||
# BOTSORT
|
||||
---
|
||||
:::ultralytics.tracker.trackers.bot_sort.BOTSORT
|
||||
<br><br>
|
||||
<br><br>
|
@ -1,5 +1,6 @@
|
||||
---
|
||||
description: Learn how to track ByteAI model sizes and tips for model optimization with STrack, a byte tracking tool from Ultralytics.
|
||||
keywords: Byte Tracker, Ultralytics STrack, application monitoring, bytes sent, bytes received, code examples, setup instructions
|
||||
---
|
||||
|
||||
# STrack
|
||||
@ -10,4 +11,4 @@ description: Learn how to track ByteAI model sizes and tips for model optimizati
|
||||
# BYTETracker
|
||||
---
|
||||
:::ultralytics.tracker.trackers.byte_tracker.BYTETracker
|
||||
<br><br>
|
||||
<br><br>
|
@ -1,8 +1,9 @@
|
||||
---
|
||||
description: '"Track Google Marketing Campaigns in GMC with Ultralytics Tracker. Learn to set up and use GMC for detailed analytics. Get started now."'
|
||||
keywords: Ultralytics, YOLO, object detection, tracker, optimization, models, documentation
|
||||
---
|
||||
|
||||
# GMC
|
||||
---
|
||||
:::ultralytics.tracker.utils.gmc.GMC
|
||||
<br><br>
|
||||
<br><br>
|
@ -1,5 +1,6 @@
|
||||
---
|
||||
description: Improve object tracking with KalmanFilterXYAH in Ultralytics YOLO - an efficient and accurate algorithm for state estimation.
|
||||
keywords: KalmanFilterXYAH, Ultralytics Docs, Kalman filter algorithm, object tracking, computer vision, YOLO
|
||||
---
|
||||
|
||||
# KalmanFilterXYAH
|
||||
@ -10,4 +11,4 @@ description: Improve object tracking with KalmanFilterXYAH in Ultralytics YOLO -
|
||||
# KalmanFilterXYWH
|
||||
---
|
||||
:::ultralytics.tracker.utils.kalman_filter.KalmanFilterXYWH
|
||||
<br><br>
|
||||
<br><br>
|
@ -1,5 +1,6 @@
|
||||
---
|
||||
description: Learn how to match and fuse object detections for accurate target tracking using Ultralytics' YOLO merge_matches, iou_distance, and embedding_distance.
|
||||
keywords: Ultralytics, multi-object tracking, object tracking, detection, recognition, matching, indices, iou distance, gate cost matrix, fuse iou, bbox ious
|
||||
---
|
||||
|
||||
# merge_matches
|
||||
@ -60,4 +61,4 @@ description: Learn how to match and fuse object detections for accurate target t
|
||||
# bbox_ious
|
||||
---
|
||||
:::ultralytics.tracker.utils.matching.bbox_ious
|
||||
<br><br>
|
||||
<br><br>
|
@ -1,8 +1,9 @@
|
||||
---
|
||||
description: Learn how to use auto_annotate in Ultralytics YOLO to generate annotations automatically for your dataset. Simplify object detection workflows.
|
||||
keywords: Ultralytics YOLO, Auto Annotator, AI, image annotation, object detection, labelling, tool
|
||||
---
|
||||
|
||||
# auto_annotate
|
||||
---
|
||||
:::ultralytics.yolo.data.annotator.auto_annotate
|
||||
<br><br>
|
||||
<br><br>
|
@ -1,5 +1,6 @@
|
||||
---
|
||||
description: Use Ultralytics YOLO Data Augmentation transforms with Base, MixUp, and Albumentations for object detection and classification.
|
||||
keywords: YOLO, data augmentation, transforms, BaseTransform, MixUp, RandomHSV, Albumentations, ToTensor, classify_transforms, classify_albumentations
|
||||
---
|
||||
|
||||
# BaseTransform
|
||||
@ -95,4 +96,4 @@ description: Use Ultralytics YOLO Data Augmentation transforms with Base, MixUp,
|
||||
# classify_albumentations
|
||||
---
|
||||
:::ultralytics.yolo.data.augment.classify_albumentations
|
||||
<br><br>
|
||||
<br><br>
|
@ -1,8 +1,9 @@
|
||||
---
|
||||
description: Learn about BaseDataset in Ultralytics YOLO, a flexible dataset class for object detection. Maximize your YOLO performance with custom datasets.
|
||||
keywords: BaseDataset, Ultralytics YOLO, object detection, real-world applications, documentation
|
||||
---
|
||||
|
||||
# BaseDataset
|
||||
---
|
||||
:::ultralytics.yolo.data.base.BaseDataset
|
||||
<br><br>
|
||||
<br><br>
|
@ -1,5 +1,6 @@
|
||||
---
|
||||
description: Maximize YOLO performance with Ultralytics' InfiniteDataLoader, seed_worker, build_dataloader, and load_inference_source functions.
|
||||
keywords: Ultralytics, YOLO, object detection, data loading, build dataloader, load inference source
|
||||
---
|
||||
|
||||
# InfiniteDataLoader
|
||||
@ -35,4 +36,4 @@ description: Maximize YOLO performance with Ultralytics' InfiniteDataLoader, see
|
||||
# load_inference_source
|
||||
---
|
||||
:::ultralytics.yolo.data.build.load_inference_source
|
||||
<br><br>
|
||||
<br><br>
|
@ -1,5 +1,6 @@
|
||||
---
|
||||
description: Convert COCO-91 to COCO-80 class, RLE to polygon, and merge multi-segment images with Ultralytics YOLO data converter. Improve your object detection.
|
||||
keywords: Ultralytics, YOLO, converter, COCO91, COCO80, rle2polygon, merge_multi_segment, annotations
|
||||
---
|
||||
|
||||
# coco91_to_coco80_class
|
||||
@ -30,4 +31,4 @@ description: Convert COCO-91 to COCO-80 class, RLE to polygon, and merge multi-s
|
||||
# delete_dsstore
|
||||
---
|
||||
:::ultralytics.yolo.data.converter.delete_dsstore
|
||||
<br><br>
|
||||
<br><br>
|
@ -1,5 +1,6 @@
|
||||
---
|
||||
description: 'Ultralytics YOLO Docs: Learn about stream loaders for image and tensor data, as well as autocasting techniques. Check out SourceTypes and more.'
|
||||
keywords: Ultralytics YOLO, data loaders, stream load images, screenshots, tensor data, autocast list, youtube URL retriever
|
||||
---
|
||||
|
||||
# SourceTypes
|
||||
@ -40,4 +41,4 @@ description: 'Ultralytics YOLO Docs: Learn about stream loaders for image and te
|
||||
# get_best_youtube_url
|
||||
---
|
||||
:::ultralytics.yolo.data.dataloaders.stream_loaders.get_best_youtube_url
|
||||
<br><br>
|
||||
<br><br>
|
@ -1,5 +1,6 @@
|
||||
---
|
||||
description: Enhance image data with Albumentations CenterCrop, normalize, augment_hsv, replicate, random_perspective, cutout, & box_candidates.
|
||||
keywords: YOLO, object detection, data loaders, V5 augmentations, CenterCrop, normalize, random_perspective
|
||||
---
|
||||
|
||||
# Albumentations
|
||||
@ -85,4 +86,4 @@ description: Enhance image data with Albumentations CenterCrop, normalize, augme
|
||||
# classify_transforms
|
||||
---
|
||||
:::ultralytics.yolo.data.dataloaders.v5augmentations.classify_transforms
|
||||
<br><br>
|
||||
<br><br>
|
@ -1,5 +1,6 @@
|
||||
---
|
||||
description: Efficiently load images and labels to models using Ultralytics YOLO's InfiniteDataLoader, LoadScreenshots, and LoadStreams.
|
||||
keywords: YOLO, data loader, image classification, object detection, Ultralytics
|
||||
---
|
||||
|
||||
# InfiniteDataLoader
|
||||
@ -90,4 +91,4 @@ description: Efficiently load images and labels to models using Ultralytics YOLO
|
||||
# create_classification_dataloader
|
||||
---
|
||||
:::ultralytics.yolo.data.dataloaders.v5loader.create_classification_dataloader
|
||||
<br><br>
|
||||
<br><br>
|
@ -1,5 +1,6 @@
|
||||
---
|
||||
description: Create custom YOLOv5 datasets with Ultralytics YOLODataset and SemanticDataset. Streamline your object detection and segmentation projects.
|
||||
keywords: YOLODataset, SemanticDataset, Ultralytics YOLO Docs, Object Detection, Segmentation
|
||||
---
|
||||
|
||||
# YOLODataset
|
||||
@ -15,4 +16,4 @@ description: Create custom YOLOv5 datasets with Ultralytics YOLODataset and Sema
|
||||
# SemanticDataset
|
||||
---
|
||||
:::ultralytics.yolo.data.dataset.SemanticDataset
|
||||
<br><br>
|
||||
<br><br>
|
@ -1,8 +1,9 @@
|
||||
---
|
||||
description: Create a custom dataset of mixed and oriented rectangular objects with Ultralytics YOLO's MixAndRectDataset.
|
||||
keywords: Ultralytics YOLO, MixAndRectDataset, dataset wrapper, image-level annotations, object-level annotations, rectangular object detection
|
||||
---
|
||||
|
||||
# MixAndRectDataset
|
||||
---
|
||||
:::ultralytics.yolo.data.dataset_wrappers.MixAndRectDataset
|
||||
<br><br>
|
||||
<br><br>
|
@ -1,5 +1,6 @@
|
||||
---
|
||||
description: Efficiently handle data in YOLO with Ultralytics. Utilize HUBDatasetStats and customize dataset with these data utility functions.
|
||||
keywords: YOLOv4, Object Detection, Computer Vision, Deep Learning, Convolutional Neural Network, CNN, Ultralytics Docs
|
||||
---
|
||||
|
||||
# HUBDatasetStats
|
||||
@ -65,4 +66,4 @@ description: Efficiently handle data in YOLO with Ultralytics. Utilize HUBDatase
|
||||
# zip_directory
|
||||
---
|
||||
:::ultralytics.yolo.data.utils.zip_directory
|
||||
<br><br>
|
||||
<br><br>
|
@ -1,5 +1,6 @@
|
||||
---
|
||||
description: Learn how to export your YOLO model in various formats using Ultralytics' exporter package - iOS, GDC, and more.
|
||||
keywords: Ultralytics, YOLO, exporter, iOS detect model, gd_outputs, export
|
||||
---
|
||||
|
||||
# Exporter
|
||||
@ -30,4 +31,4 @@ description: Learn how to export your YOLO model in various formats using Ultral
|
||||
# export
|
||||
---
|
||||
:::ultralytics.yolo.engine.exporter.export
|
||||
<br><br>
|
||||
<br><br>
|
@ -1,8 +1,9 @@
|
||||
---
|
||||
description: Discover the YOLO model of Ultralytics engine to simplify your object detection tasks with state-of-the-art models.
|
||||
keywords: YOLO, object detection, model, architecture, usage, customization, Ultralytics Docs
|
||||
---
|
||||
|
||||
# YOLO
|
||||
---
|
||||
:::ultralytics.yolo.engine.model.YOLO
|
||||
<br><br>
|
||||
<br><br>
|
@ -1,8 +1,9 @@
|
||||
---
|
||||
description: '"The BasePredictor class in Ultralytics YOLO Engine predicts object detection in images and videos. Learn to implement YOLO with ease."'
|
||||
keywords: Ultralytics, YOLO, BasePredictor, Object Detection, Computer Vision, Fast Model, Insights
|
||||
---
|
||||
|
||||
# BasePredictor
|
||||
---
|
||||
:::ultralytics.yolo.engine.predictor.BasePredictor
|
||||
<br><br>
|
||||
<br><br>
|
@ -1,5 +1,6 @@
|
||||
---
|
||||
description: Learn about BaseTensor & Boxes in Ultralytics YOLO Engine. Check out Ultralytics Docs for quality tutorials and resources on object detection.
|
||||
keywords: YOLO, Engine, Results, Masks, Probs, Ultralytics
|
||||
---
|
||||
|
||||
# BaseTensor
|
||||
@ -21,3 +22,13 @@ description: Learn about BaseTensor & Boxes in Ultralytics YOLO Engine. Check ou
|
||||
---
|
||||
:::ultralytics.yolo.engine.results.Masks
|
||||
<br><br>
|
||||
|
||||
# Keypoints
|
||||
---
|
||||
:::ultralytics.yolo.engine.results.Keypoints
|
||||
<br><br>
|
||||
|
||||
# Probs
|
||||
---
|
||||
:::ultralytics.yolo.engine.results.Probs
|
||||
<br><br>
|
@ -1,13 +1,9 @@
|
||||
---
|
||||
description: Train faster with mixed precision. Learn how to use BaseTrainer with Advanced Mixed Precision to optimize YOLOv3 and YOLOv4 models.
|
||||
keywords: Ultralytics YOLO, BaseTrainer, object detection models, training guide
|
||||
---
|
||||
|
||||
# BaseTrainer
|
||||
---
|
||||
:::ultralytics.yolo.engine.trainer.BaseTrainer
|
||||
<br><br>
|
||||
|
||||
# check_amp
|
||||
---
|
||||
:::ultralytics.yolo.engine.trainer.check_amp
|
||||
<br><br>
|
||||
<br><br>
|
@ -1,8 +1,9 @@
|
||||
---
|
||||
description: Ensure YOLOv5 models meet constraints and standards with the BaseValidator class. Learn how to use it here.
|
||||
keywords: Ultralytics, YOLO, BaseValidator, models, validation, object detection
|
||||
---
|
||||
|
||||
# BaseValidator
|
||||
---
|
||||
:::ultralytics.yolo.engine.validator.BaseValidator
|
||||
<br><br>
|
||||
<br><br>
|
9
docs/reference/yolo/nas/model.md
Normal file
9
docs/reference/yolo/nas/model.md
Normal file
@ -0,0 +1,9 @@
|
||||
---
|
||||
description: Learn about the Neural Architecture Search (NAS) feature available in Ultralytics YOLO. Find out how NAS can improve object detection models and increase accuracy. Get started today!.
|
||||
keywords: Ultralytics YOLO, object detection, NAS, Neural Architecture Search, model optimization, accuracy improvement
|
||||
---
|
||||
|
||||
# NAS
|
||||
---
|
||||
:::ultralytics.yolo.nas.model.NAS
|
||||
<br><br>
|
9
docs/reference/yolo/nas/predict.md
Normal file
9
docs/reference/yolo/nas/predict.md
Normal file
@ -0,0 +1,9 @@
|
||||
---
|
||||
description: Learn how to use NASPredictor in Ultralytics YOLO for deploying efficient CNN models with search algorithms in neural architecture search.
|
||||
keywords: Ultralytics YOLO, NASPredictor, neural architecture search, efficient CNN models, search algorithms
|
||||
---
|
||||
|
||||
# NASPredictor
|
||||
---
|
||||
:::ultralytics.yolo.nas.predict.NASPredictor
|
||||
<br><br>
|
9
docs/reference/yolo/nas/val.md
Normal file
9
docs/reference/yolo/nas/val.md
Normal file
@ -0,0 +1,9 @@
|
||||
---
|
||||
description: Learn about NASValidator in the Ultralytics YOLO Docs. Properly validate YOLO neural architecture search results for optimal performance.
|
||||
keywords: NASValidator, YOLO, neural architecture search, validation, performance, Ultralytics
|
||||
---
|
||||
|
||||
# NASValidator
|
||||
---
|
||||
:::ultralytics.yolo.nas.val.NASValidator
|
||||
<br><br>
|
@ -1,5 +1,6 @@
|
||||
---
|
||||
description: Dynamically adjusts input size to optimize GPU memory usage during training. Learn how to use check_train_batch_size with Ultralytics YOLO.
|
||||
keywords: YOLOv5, batch size, training, Ultralytics Autobatch, object detection, model performance
|
||||
---
|
||||
|
||||
# check_train_batch_size
|
||||
@ -10,4 +11,4 @@ description: Dynamically adjusts input size to optimize GPU memory usage during
|
||||
# autobatch
|
||||
---
|
||||
:::ultralytics.yolo.utils.autobatch.autobatch
|
||||
<br><br>
|
||||
<br><br>
|
@ -1,5 +1,6 @@
|
||||
---
|
||||
description: Improve your YOLO's performance and measure its speed. Benchmark utility for YOLOv5.
|
||||
keywords: Ultralytics YOLO, ProfileModels, benchmark, model inference, detection
|
||||
---
|
||||
|
||||
# ProfileModels
|
||||
@ -10,4 +11,4 @@ description: Improve your YOLO's performance and measure its speed. Benchmark ut
|
||||
# benchmark
|
||||
---
|
||||
:::ultralytics.yolo.utils.benchmarks.benchmark
|
||||
<br><br>
|
||||
<br><br>
|
@ -1,5 +1,6 @@
|
||||
---
|
||||
description: Learn about YOLO's callback functions from on_train_start to add_integration_callbacks. See how these callbacks modify and save models.
|
||||
keywords: YOLO, Ultralytics, callbacks, object detection, training, inference
|
||||
---
|
||||
|
||||
# on_pretrain_routine_start
|
||||
@ -135,4 +136,4 @@ description: Learn about YOLO's callback functions from on_train_start to add_in
|
||||
# add_integration_callbacks
|
||||
---
|
||||
:::ultralytics.yolo.utils.callbacks.base.add_integration_callbacks
|
||||
<br><br>
|
||||
<br><br>
|
@ -1,5 +1,6 @@
|
||||
---
|
||||
description: Improve your YOLOv5 model training with callbacks from ClearML. Learn about log debug samples, pre-training routines, validation and more.
|
||||
keywords: Ultralytics YOLO, callbacks, log plots, epoch monitoring, training end events
|
||||
---
|
||||
|
||||
# _log_debug_samples
|
||||
@ -35,4 +36,4 @@ description: Improve your YOLOv5 model training with callbacks from ClearML. Lea
|
||||
# on_train_end
|
||||
---
|
||||
:::ultralytics.yolo.utils.callbacks.clearml.on_train_end
|
||||
<br><br>
|
||||
<br><br>
|
@ -1,5 +1,6 @@
|
||||
---
|
||||
description: Learn about YOLO callbacks using the Comet.ml platform, enhancing object detection training and testing with custom logging and visualizations.
|
||||
keywords: Ultralytics, YOLO, callbacks, Comet ML, log images, log predictions, log plots, fetch metadata, fetch annotations, create experiment data, format experiment data
|
||||
---
|
||||
|
||||
# _get_comet_mode
|
||||
@ -120,4 +121,4 @@ description: Learn about YOLO callbacks using the Comet.ml platform, enhancing o
|
||||
# on_train_end
|
||||
---
|
||||
:::ultralytics.yolo.utils.callbacks.comet.on_train_end
|
||||
<br><br>
|
||||
<br><br>
|
54
docs/reference/yolo/utils/callbacks/dvc.md
Normal file
54
docs/reference/yolo/utils/callbacks/dvc.md
Normal file
@ -0,0 +1,54 @@
|
||||
---
|
||||
description: Explore Ultralytics YOLO Utils DVC Callbacks such as logging images, plots, confusion matrices, and training progress.
|
||||
keywords: Ultralytics, YOLO, Utils, DVC, Callbacks, images, plots, confusion matrices, training progress
|
||||
---
|
||||
|
||||
# _logger_disabled
|
||||
---
|
||||
:::ultralytics.yolo.utils.callbacks.dvc._logger_disabled
|
||||
<br><br>
|
||||
|
||||
# _log_images
|
||||
---
|
||||
:::ultralytics.yolo.utils.callbacks.dvc._log_images
|
||||
<br><br>
|
||||
|
||||
# _log_plots
|
||||
---
|
||||
:::ultralytics.yolo.utils.callbacks.dvc._log_plots
|
||||
<br><br>
|
||||
|
||||
# _log_confusion_matrix
|
||||
---
|
||||
:::ultralytics.yolo.utils.callbacks.dvc._log_confusion_matrix
|
||||
<br><br>
|
||||
|
||||
# on_pretrain_routine_start
|
||||
---
|
||||
:::ultralytics.yolo.utils.callbacks.dvc.on_pretrain_routine_start
|
||||
<br><br>
|
||||
|
||||
# on_pretrain_routine_end
|
||||
---
|
||||
:::ultralytics.yolo.utils.callbacks.dvc.on_pretrain_routine_end
|
||||
<br><br>
|
||||
|
||||
# on_train_start
|
||||
---
|
||||
:::ultralytics.yolo.utils.callbacks.dvc.on_train_start
|
||||
<br><br>
|
||||
|
||||
# on_train_epoch_start
|
||||
---
|
||||
:::ultralytics.yolo.utils.callbacks.dvc.on_train_epoch_start
|
||||
<br><br>
|
||||
|
||||
# on_fit_epoch_end
|
||||
---
|
||||
:::ultralytics.yolo.utils.callbacks.dvc.on_fit_epoch_end
|
||||
<br><br>
|
||||
|
||||
# on_train_end
|
||||
---
|
||||
:::ultralytics.yolo.utils.callbacks.dvc.on_train_end
|
||||
<br><br>
|
@ -1,5 +1,6 @@
|
||||
---
|
||||
description: Improve YOLOv5 model training with Ultralytics' on-train callbacks. Boost performance on-pretrain-routine-end, model-save, train/predict start.
|
||||
keywords: Ultralytics, YOLO, callbacks, on_pretrain_routine_end, on_fit_epoch_end, on_train_start, on_val_start, on_predict_start, on_export_start
|
||||
---
|
||||
|
||||
# on_pretrain_routine_end
|
||||
@ -40,4 +41,4 @@ description: Improve YOLOv5 model training with Ultralytics' on-train callbacks.
|
||||
# on_export_start
|
||||
---
|
||||
:::ultralytics.yolo.utils.callbacks.hub.on_export_start
|
||||
<br><br>
|
||||
<br><br>
|
@ -1,5 +1,6 @@
|
||||
---
|
||||
description: Track model performance and metrics with MLflow in YOLOv5. Use callbacks like on_pretrain_routine_end or on_train_end to log information.
|
||||
keywords: Ultralytics, YOLO, Utils, MLflow, callbacks, on_pretrain_routine_end, on_train_end, Tracking, Model Management, training
|
||||
---
|
||||
|
||||
# on_pretrain_routine_end
|
||||
@ -15,4 +16,4 @@ description: Track model performance and metrics with MLflow in YOLOv5. Use call
|
||||
# on_train_end
|
||||
---
|
||||
:::ultralytics.yolo.utils.callbacks.mlflow.on_train_end
|
||||
<br><br>
|
||||
<br><br>
|
@ -1,5 +1,6 @@
|
||||
---
|
||||
description: Improve YOLOv5 training with Neptune, a powerful logging tool. Track metrics like images, plots, and epochs for better model performance.
|
||||
keywords: Ultralytics, YOLO, Neptune, Callbacks, log scalars, log images, log plots, training, validation
|
||||
---
|
||||
|
||||
# _log_scalars
|
||||
@ -40,4 +41,4 @@ description: Improve YOLOv5 training with Neptune, a powerful logging tool. Trac
|
||||
# on_train_end
|
||||
---
|
||||
:::ultralytics.yolo.utils.callbacks.neptune.on_train_end
|
||||
<br><br>
|
||||
<br><br>
|
@ -1,8 +1,9 @@
|
||||
---
|
||||
description: '"Improve YOLO model performance with on_fit_epoch_end callback. Learn to integrate with Ray Tune for hyperparameter tuning. Ultralytics YOLO docs."'
|
||||
keywords: on_fit_epoch_end, Ultralytics YOLO, callback function, training, model tuning
|
||||
---
|
||||
|
||||
# on_fit_epoch_end
|
||||
---
|
||||
:::ultralytics.yolo.utils.callbacks.raytune.on_fit_epoch_end
|
||||
<br><br>
|
||||
<br><br>
|
@ -1,5 +1,6 @@
|
||||
---
|
||||
description: Learn how to monitor the training process with Tensorboard using Ultralytics YOLO's "_log_scalars" and "on_batch_end" methods.
|
||||
keywords: TensorBoard callbacks, YOLO training, ultralytics YOLO
|
||||
---
|
||||
|
||||
# _log_scalars
|
||||
@ -20,4 +21,4 @@ description: Learn how to monitor the training process with Tensorboard using Ul
|
||||
# on_fit_epoch_end
|
||||
---
|
||||
:::ultralytics.yolo.utils.callbacks.tensorboard.on_fit_epoch_end
|
||||
<br><br>
|
||||
<br><br>
|
@ -1,7 +1,13 @@
|
||||
---
|
||||
description: Learn how to use Ultralytics YOLO's built-in callbacks `on_pretrain_routine_start` and `on_train_epoch_end` for improved training performance.
|
||||
keywords: Ultralytics, YOLO, callbacks, weights, biases, training
|
||||
---
|
||||
|
||||
# _log_plots
|
||||
---
|
||||
:::ultralytics.yolo.utils.callbacks.wb._log_plots
|
||||
<br><br>
|
||||
|
||||
# on_pretrain_routine_start
|
||||
---
|
||||
:::ultralytics.yolo.utils.callbacks.wb.on_pretrain_routine_start
|
||||
@ -20,4 +26,4 @@ description: Learn how to use Ultralytics YOLO's built-in callbacks `on_pretrain
|
||||
# on_train_end
|
||||
---
|
||||
:::ultralytics.yolo.utils.callbacks.wb.on_train_end
|
||||
<br><br>
|
||||
<br><br>
|
@ -1,5 +1,6 @@
|
||||
---
|
||||
description: 'Check functions for YOLO utils: image size, version, font, requirements, filename suffix, YAML file, YOLO, and Git version.'
|
||||
keywords: YOLO, Ultralytics, Utils, Checks, image sizing, version updates, font compatibility, Python requirements, file suffixes, YAML syntax, image showing, AMP
|
||||
---
|
||||
|
||||
# is_ascii
|
||||
@ -72,6 +73,11 @@ description: 'Check functions for YOLO utils: image size, version, font, require
|
||||
:::ultralytics.yolo.utils.checks.check_yolo
|
||||
<br><br>
|
||||
|
||||
# check_amp
|
||||
---
|
||||
:::ultralytics.yolo.utils.checks.check_amp
|
||||
<br><br>
|
||||
|
||||
# git_describe
|
||||
---
|
||||
:::ultralytics.yolo.utils.checks.git_describe
|
||||
@ -80,4 +86,4 @@ description: 'Check functions for YOLO utils: image size, version, font, require
|
||||
# print_args
|
||||
---
|
||||
:::ultralytics.yolo.utils.checks.print_args
|
||||
<br><br>
|
||||
<br><br>
|
@ -1,5 +1,6 @@
|
||||
---
|
||||
description: Learn how to find free network port and generate DDP (Distributed Data Parallel) command in Ultralytics YOLO with easy examples.
|
||||
keywords: ultralytics, YOLO, utils, dist, distributed deep learning, DDP file, DDP cleanup
|
||||
---
|
||||
|
||||
# find_free_network_port
|
||||
@ -20,4 +21,4 @@ description: Learn how to find free network port and generate DDP (Distributed D
|
||||
# ddp_cleanup
|
||||
---
|
||||
:::ultralytics.yolo.utils.dist.ddp_cleanup
|
||||
<br><br>
|
||||
<br><br>
|
@ -1,5 +1,6 @@
|
||||
---
|
||||
description: Download and unzip YOLO pretrained models. Ultralytics YOLO docs utils.downloads.unzip_file, checks disk space, downloads and attempts assets.
|
||||
keywords: Ultralytics YOLO, downloads, trained models, datasets, weights, deep learning, computer vision
|
||||
---
|
||||
|
||||
# is_url
|
||||
@ -30,4 +31,4 @@ description: Download and unzip YOLO pretrained models. Ultralytics YOLO docs ut
|
||||
# download
|
||||
---
|
||||
:::ultralytics.yolo.utils.downloads.download
|
||||
<br><br>
|
||||
<br><br>
|
@ -1,8 +1,9 @@
|
||||
---
|
||||
description: Learn about HUBModelError in Ultralytics YOLO Docs. Resolve the error and get the most out of your YOLO model.
|
||||
keywords: HUBModelError, Ultralytics YOLO, YOLO Documentation, Object detection errors, YOLO Errors, HUBModelError Solutions
|
||||
---
|
||||
|
||||
# HUBModelError
|
||||
---
|
||||
:::ultralytics.yolo.utils.errors.HUBModelError
|
||||
<br><br>
|
||||
<br><br>
|
@ -1,5 +1,6 @@
|
||||
---
|
||||
description: 'Learn about Ultralytics YOLO files and directory utilities: WorkingDirectory, file_age, file_size, and make_dirs.'
|
||||
keywords: YOLO, object detection, file utils, file age, file size, working directory, make directories, Ultralytics Docs
|
||||
---
|
||||
|
||||
# WorkingDirectory
|
||||
@ -35,4 +36,4 @@ description: 'Learn about Ultralytics YOLO files and directory utilities: Workin
|
||||
# make_dirs
|
||||
---
|
||||
:::ultralytics.yolo.utils.files.make_dirs
|
||||
<br><br>
|
||||
<br><br>
|
@ -1,5 +1,6 @@
|
||||
---
|
||||
description: Learn about Bounding Boxes (Bboxes) and _ntuple in Ultralytics YOLO for object detection. Improve accuracy and speed with these powerful tools.
|
||||
keywords: Ultralytics, YOLO, Bboxes, _ntuple, object detection, instance segmentation
|
||||
---
|
||||
|
||||
# Bboxes
|
||||
@ -15,4 +16,4 @@ description: Learn about Bounding Boxes (Bboxes) and _ntuple in Ultralytics YOLO
|
||||
# _ntuple
|
||||
---
|
||||
:::ultralytics.yolo.utils.instance._ntuple
|
||||
<br><br>
|
||||
<br><br>
|
@ -1,5 +1,6 @@
|
||||
---
|
||||
description: Learn about Varifocal Loss and Keypoint Loss in Ultralytics YOLO for advanced bounding box and pose estimation. Visit our docs for more.
|
||||
keywords: Ultralytics, YOLO, loss functions, object detection, keypoint detection, segmentation, classification
|
||||
---
|
||||
|
||||
# VarifocalLoss
|
||||
@ -35,4 +36,4 @@ description: Learn about Varifocal Loss and Keypoint Loss in Ultralytics YOLO fo
|
||||
# v8ClassificationLoss
|
||||
---
|
||||
:::ultralytics.yolo.utils.loss.v8ClassificationLoss
|
||||
<br><br>
|
||||
<br><br>
|
@ -1,5 +1,6 @@
|
||||
---
|
||||
description: Explore Ultralytics YOLO's FocalLoss, DetMetrics, PoseMetrics, ClassifyMetrics, and more with Ultralytics Metrics documentation.
|
||||
keywords: YOLOv5, metrics, losses, confusion matrix, detection metrics, pose metrics, classification metrics, intersection over area, intersection over union, keypoint intersection over union, average precision, per class average precision, Ultralytics Docs
|
||||
---
|
||||
|
||||
# FocalLoss
|
||||
@ -95,4 +96,4 @@ description: Explore Ultralytics YOLO's FocalLoss, DetMetrics, PoseMetrics, Clas
|
||||
# ap_per_class
|
||||
---
|
||||
:::ultralytics.yolo.utils.metrics.ap_per_class
|
||||
<br><br>
|
||||
<br><br>
|
@ -1,5 +1,6 @@
|
||||
---
|
||||
description: Learn about various utility functions in Ultralytics YOLO, including x, y, width, height conversions, non-max suppression, and more.
|
||||
keywords: Ultralytics, YOLO, Utils Ops, Functions, coco80_to_coco91_class, scale_boxes, non_max_suppression, clip_coords, xyxy2xywh, xywhn2xyxy, xyn2xy, xyxy2ltwh, ltwh2xyxy, resample_segments, process_mask_upsample, process_mask_native, masks2segments, clean_str
|
||||
---
|
||||
|
||||
# Profile
|
||||
@ -135,4 +136,4 @@ description: Learn about various utility functions in Ultralytics YOLO, includin
|
||||
# clean_str
|
||||
---
|
||||
:::ultralytics.yolo.utils.ops.clean_str
|
||||
<br><br>
|
||||
<br><br>
|
@ -1,5 +1,6 @@
|
||||
---
|
||||
description: 'Discover the power of YOLO''s plotting functions: Colors, Labels and Images. Code examples to output targets and visualize features. Check it now.'
|
||||
keywords: YOLO, object detection, plotting, visualization, annotator, save one box, plot results, feature visualization, Ultralytics
|
||||
---
|
||||
|
||||
# Colors
|
||||
@ -40,4 +41,4 @@ description: 'Discover the power of YOLO''s plotting functions: Colors, Labels a
|
||||
# feature_visualization
|
||||
---
|
||||
:::ultralytics.yolo.utils.plotting.feature_visualization
|
||||
<br><br>
|
||||
<br><br>
|
@ -1,5 +1,6 @@
|
||||
---
|
||||
description: Improve your YOLO models with Ultralytics' TaskAlignedAssigner, select_highest_overlaps, and dist2bbox utilities. Streamline your workflow today.
|
||||
keywords: Ultrayltics, YOLO, select_candidates_in_gts, make_anchor, bbox2dist, object detection, tracking
|
||||
---
|
||||
|
||||
# TaskAlignedAssigner
|
||||
@ -30,4 +31,4 @@ description: Improve your YOLO models with Ultralytics' TaskAlignedAssigner, sel
|
||||
# bbox2dist
|
||||
---
|
||||
:::ultralytics.yolo.utils.tal.bbox2dist
|
||||
<br><br>
|
||||
<br><br>
|
@ -1,5 +1,6 @@
|
||||
---
|
||||
description: Optimize your PyTorch models with Ultralytics YOLO's torch_utils functions such as ModelEMA, select_device, and is_parallel.
|
||||
keywords: Ultralytics YOLO, Torch, Utils, Pytorch, Object Detection
|
||||
---
|
||||
|
||||
# ModelEMA
|
||||
@ -130,4 +131,4 @@ description: Optimize your PyTorch models with Ultralytics YOLO's torch_utils fu
|
||||
# profile
|
||||
---
|
||||
:::ultralytics.yolo.utils.torch_utils.profile
|
||||
<br><br>
|
||||
<br><br>
|
@ -1,5 +1,6 @@
|
||||
---
|
||||
description: Learn how to use ClassificationPredictor in Ultralytics YOLOv8 for object classification tasks in a simple and efficient way.
|
||||
keywords: Ultralytics, YOLO, v8, Classify Predictor, object detection, classification, computer vision
|
||||
---
|
||||
|
||||
# ClassificationPredictor
|
||||
@ -10,4 +11,4 @@ description: Learn how to use ClassificationPredictor in Ultralytics YOLOv8 for
|
||||
# predict
|
||||
---
|
||||
:::ultralytics.yolo.v8.classify.predict.predict
|
||||
<br><br>
|
||||
<br><br>
|
@ -1,5 +1,6 @@
|
||||
---
|
||||
description: Train a custom image classification model using Ultralytics YOLOv8 with ClassificationTrainer. Boost accuracy and efficiency today.
|
||||
keywords: Ultralytics, YOLOv8, object detection, classification, training, API
|
||||
---
|
||||
|
||||
# ClassificationTrainer
|
||||
@ -10,4 +11,4 @@ description: Train a custom image classification model using Ultralytics YOLOv8
|
||||
# train
|
||||
---
|
||||
:::ultralytics.yolo.v8.classify.train.train
|
||||
<br><br>
|
||||
<br><br>
|
@ -1,5 +1,6 @@
|
||||
---
|
||||
description: Ensure model classification accuracy with Ultralytics YOLO's ClassificationValidator. Validate and improve your model with ease.
|
||||
keywords: ClassificationValidator, Ultralytics YOLO, Validation, Data Science, Deep Learning
|
||||
---
|
||||
|
||||
# ClassificationValidator
|
||||
@ -10,4 +11,4 @@ description: Ensure model classification accuracy with Ultralytics YOLO's Classi
|
||||
# val
|
||||
---
|
||||
:::ultralytics.yolo.v8.classify.val.val
|
||||
<br><br>
|
||||
<br><br>
|
@ -1,5 +1,6 @@
|
||||
---
|
||||
description: Detect and predict objects in images and videos using the Ultralytics YOLO v8 model with DetectionPredictor.
|
||||
keywords: detectionpredictor, ultralytics yolo, object detection, neural network, machine learning
|
||||
---
|
||||
|
||||
# DetectionPredictor
|
||||
@ -10,4 +11,4 @@ description: Detect and predict objects in images and videos using the Ultralyti
|
||||
# predict
|
||||
---
|
||||
:::ultralytics.yolo.v8.detect.predict.predict
|
||||
<br><br>
|
||||
<br><br>
|
@ -1,5 +1,6 @@
|
||||
---
|
||||
description: Train and optimize custom object detection models with Ultralytics DetectionTrainer and train functions. Get started with YOLO v8 today.
|
||||
keywords: DetectionTrainer, Ultralytics YOLO, custom object detection, train models, AI applications
|
||||
---
|
||||
|
||||
# DetectionTrainer
|
||||
@ -10,4 +11,4 @@ description: Train and optimize custom object detection models with Ultralytics
|
||||
# train
|
||||
---
|
||||
:::ultralytics.yolo.v8.detect.train.train
|
||||
<br><br>
|
||||
<br><br>
|
@ -1,5 +1,6 @@
|
||||
---
|
||||
description: Validate YOLOv5 detections using this PyTorch module. Ensure model accuracy with NMS IOU threshold tuning and label mapping.
|
||||
keywords: detection, validator, YOLOv5, object detection, model improvement, Ultralytics Docs
|
||||
---
|
||||
|
||||
# DetectionValidator
|
||||
@ -10,4 +11,4 @@ description: Validate YOLOv5 detections using this PyTorch module. Ensure model
|
||||
# val
|
||||
---
|
||||
:::ultralytics.yolo.v8.detect.val.val
|
||||
<br><br>
|
||||
<br><br>
|
@ -1,5 +1,6 @@
|
||||
---
|
||||
description: Predict human pose coordinates and confidence scores using YOLOv5. Use on real-time video streams or static images.
|
||||
keywords: Ultralytics, YOLO, v8, documentation, PosePredictor, pose prediction, pose estimation, predict method
|
||||
---
|
||||
|
||||
# PosePredictor
|
||||
@ -10,4 +11,4 @@ description: Predict human pose coordinates and confidence scores using YOLOv5.
|
||||
# predict
|
||||
---
|
||||
:::ultralytics.yolo.v8.pose.predict.predict
|
||||
<br><br>
|
||||
<br><br>
|
@ -1,5 +1,6 @@
|
||||
---
|
||||
description: Boost posture detection using PoseTrainer and train models using train() API. Learn PoseLoss for ultra-fast and accurate pose detection with Ultralytics YOLO.
|
||||
keywords: PoseTrainer, human pose models, deep learning, computer vision, Ultralytics YOLO, v8
|
||||
---
|
||||
|
||||
# PoseTrainer
|
||||
@ -10,4 +11,4 @@ description: Boost posture detection using PoseTrainer and train models using tr
|
||||
# train
|
||||
---
|
||||
:::ultralytics.yolo.v8.pose.train.train
|
||||
<br><br>
|
||||
<br><br>
|
@ -1,5 +1,6 @@
|
||||
---
|
||||
description: Ensure proper human poses in images with YOLOv8 Pose Validation, part of the Ultralytics YOLO v8 suite.
|
||||
keywords: PoseValidator, Ultralytics YOLO, object detection, pose analysis, validation
|
||||
---
|
||||
|
||||
# PoseValidator
|
||||
@ -10,4 +11,4 @@ description: Ensure proper human poses in images with YOLOv8 Pose Validation, pa
|
||||
# val
|
||||
---
|
||||
:::ultralytics.yolo.v8.pose.val.val
|
||||
<br><br>
|
||||
<br><br>
|
@ -1,5 +1,6 @@
|
||||
---
|
||||
description: '"Use SegmentationPredictor in YOLOv8 for efficient object detection and segmentation. Explore Ultralytics YOLO Docs for more information."'
|
||||
keywords: Ultralytics YOLO, SegmentationPredictor, object detection, segmentation masks, predict
|
||||
---
|
||||
|
||||
# SegmentationPredictor
|
||||
@ -10,4 +11,4 @@ description: '"Use SegmentationPredictor in YOLOv8 for efficient object detectio
|
||||
# predict
|
||||
---
|
||||
:::ultralytics.yolo.v8.segment.predict.predict
|
||||
<br><br>
|
||||
<br><br>
|
@ -1,5 +1,6 @@
|
||||
---
|
||||
description: Learn about SegmentationTrainer and Train in Ultralytics YOLO v8 for efficient object detection models. Improve your training with Ultralytics Docs.
|
||||
keywords: SegmentationTrainer, Ultralytics YOLO, object detection, segmentation, train, tutorial, guide, code examples
|
||||
---
|
||||
|
||||
# SegmentationTrainer
|
||||
@ -10,4 +11,4 @@ description: Learn about SegmentationTrainer and Train in Ultralytics YOLO v8 fo
|
||||
# train
|
||||
---
|
||||
:::ultralytics.yolo.v8.segment.train.train
|
||||
<br><br>
|
||||
<br><br>
|
@ -1,5 +1,6 @@
|
||||
---
|
||||
description: Ensure segmentation quality on large datasets with SegmentationValidator. Review and visualize results with ease. Learn more at Ultralytics Docs.
|
||||
keywords: SegmentationValidator, YOLOv8, Ultralytics Docs, segmentation model, validation
|
||||
---
|
||||
|
||||
# SegmentationValidator
|
||||
@ -10,4 +11,4 @@ description: Ensure segmentation quality on large datasets with SegmentationVali
|
||||
# val
|
||||
---
|
||||
:::ultralytics.yolo.v8.segment.val.val
|
||||
<br><br>
|
||||
<br><br>
|
Reference in New Issue
Block a user