Update LICENSE to AGPL-3.0 (#2031)
This commit is contained in:
@ -1,4 +1,4 @@
|
||||
# Ultralytics YOLO 🚀, GPL-3.0 license
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
# Argoverse-HD dataset (ring-front-center camera) http://www.cs.cmu.edu/~mengtial/proj/streaming/ by Argo AI
|
||||
# Example usage: yolo train data=Argoverse.yaml
|
||||
# parent
|
||||
|
@ -1,4 +1,4 @@
|
||||
# Ultralytics YOLO 🚀, GPL-3.0 license
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
# Global Wheat 2020 dataset http://www.global-wheat.com/ by University of Saskatchewan
|
||||
# Example usage: yolo train data=GlobalWheat2020.yaml
|
||||
# parent
|
||||
|
@ -1,4 +1,4 @@
|
||||
# Ultralytics YOLO 🚀, GPL-3.0 license
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
# ImageNet-1k dataset https://www.image-net.org/index.php by Stanford University
|
||||
# Simplified class names from https://github.com/anishathalye/imagenet-simple-labels
|
||||
# Example usage: yolo train task=classify data=imagenet
|
||||
|
@ -1,4 +1,4 @@
|
||||
# Ultralytics YOLO 🚀, GPL-3.0 license
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
# Objects365 dataset https://www.objects365.org/ by Megvii
|
||||
# Example usage: yolo train data=Objects365.yaml
|
||||
# parent
|
||||
|
@ -1,4 +1,4 @@
|
||||
# Ultralytics YOLO 🚀, GPL-3.0 license
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
# SKU-110K retail items dataset https://github.com/eg4000/SKU110K_CVPR19 by Trax Retail
|
||||
# Example usage: yolo train data=SKU-110K.yaml
|
||||
# parent
|
||||
|
@ -1,4 +1,4 @@
|
||||
# Ultralytics YOLO 🚀, GPL-3.0 license
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
# PASCAL VOC dataset http://host.robots.ox.ac.uk/pascal/VOC by University of Oxford
|
||||
# Example usage: yolo train data=VOC.yaml
|
||||
# parent
|
||||
|
@ -1,4 +1,4 @@
|
||||
# Ultralytics YOLO 🚀, GPL-3.0 license
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
# VisDrone2019-DET dataset https://github.com/VisDrone/VisDrone-Dataset by Tianjin University
|
||||
# Example usage: yolo train data=VisDrone.yaml
|
||||
# parent
|
||||
|
@ -1,4 +1,4 @@
|
||||
# Ultralytics YOLO 🚀, GPL-3.0 license
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
# COCO 2017 dataset http://cocodataset.org by Microsoft
|
||||
# Example usage: yolo train data=coco-pose.yaml
|
||||
# parent
|
||||
|
@ -1,4 +1,4 @@
|
||||
# Ultralytics YOLO 🚀, GPL-3.0 license
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
# COCO 2017 dataset http://cocodataset.org by Microsoft
|
||||
# Example usage: yolo train data=coco.yaml
|
||||
# parent
|
||||
|
@ -1,4 +1,4 @@
|
||||
# Ultralytics YOLO 🚀, GPL-3.0 license
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
# COCO128-seg dataset https://www.kaggle.com/ultralytics/coco128 (first 128 images from COCO train2017) by Ultralytics
|
||||
# Example usage: yolo train data=coco128.yaml
|
||||
# parent
|
||||
|
@ -1,4 +1,4 @@
|
||||
# Ultralytics YOLO 🚀, GPL-3.0 license
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
# COCO128 dataset https://www.kaggle.com/ultralytics/coco128 (first 128 images from COCO train2017) by Ultralytics
|
||||
# Example usage: yolo train data=coco128.yaml
|
||||
# parent
|
||||
|
@ -1,4 +1,4 @@
|
||||
# Ultralytics YOLO 🚀, GPL-3.0 license
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
# COCO8-pose dataset (first 8 images from COCO train2017) by Ultralytics
|
||||
# Example usage: yolo train data=coco8-pose.yaml
|
||||
# parent
|
||||
|
@ -1,4 +1,4 @@
|
||||
# Ultralytics YOLO 🚀, GPL-3.0 license
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
# COCO8-seg dataset (first 8 images from COCO train2017) by Ultralytics
|
||||
# Example usage: yolo train data=coco8-seg.yaml
|
||||
# parent
|
||||
|
@ -1,4 +1,4 @@
|
||||
# Ultralytics YOLO 🚀, GPL-3.0 license
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
# COCO8 dataset (first 8 images from COCO train2017) by Ultralytics
|
||||
# Example usage: yolo train data=coco8.yaml
|
||||
# parent
|
||||
|
@ -1,4 +1,4 @@
|
||||
# Ultralytics YOLO 🚀, GPL-3.0 license
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
# DIUx xView 2018 Challenge https://challenge.xviewdataset.org by U.S. National Geospatial-Intelligence Agency (NGA)
|
||||
# -------- DOWNLOAD DATA MANUALLY and jar xf val_images.zip to 'datasets/xView' before running train command! --------
|
||||
# Example usage: yolo train data=xView.yaml
|
||||
|
Reference in New Issue
Block a user