Add clearml logging (#51)
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
1
ultralytics/yolo/utils/callbacks/__init__.py
Normal file
1
ultralytics/yolo/utils/callbacks/__init__.py
Normal file
@ -0,0 +1 @@
|
||||
from .base import add_integration_callbacks, default_callbacks
|
@ -30,3 +30,12 @@ default_callbacks = {
|
||||
"on_val_start": on_val_start,
|
||||
"on_val_end": on_val_end,
|
||||
"on_model_save": on_model_save}
|
||||
|
||||
|
||||
def add_integration_callbacks(trainer):
|
||||
callbacks = {}
|
||||
|
||||
from .clearml import callbacks, clearml
|
||||
if clearml:
|
||||
for callback, func in callbacks.items():
|
||||
trainer.add_callback(callback, func)
|
45
ultralytics/yolo/utils/callbacks/clearml.py
Normal file
45
ultralytics/yolo/utils/callbacks/clearml.py
Normal file
@ -0,0 +1,45 @@
|
||||
try:
|
||||
import clearml
|
||||
from clearml import Task
|
||||
|
||||
assert hasattr(clearml, '__version__')
|
||||
except (ImportError, AssertionError):
|
||||
clearml = None
|
||||
|
||||
|
||||
def _log_scalers(metric_dict, group="", step=0):
|
||||
task = Task.current_task()
|
||||
if task:
|
||||
for k, v in metric_dict.items():
|
||||
task.get_logger().report_scalar(group, k, v, step)
|
||||
|
||||
|
||||
def before_train(trainer):
|
||||
# TODO: reuse existing task
|
||||
task = Task.init(project_name=trainer.args.project if trainer.args.project != 'runs/train' else 'YOLOv5',
|
||||
task_name=trainer.args.name if trainer.args.name != 'exp' else 'Training',
|
||||
tags=['YOLOv5'],
|
||||
output_uri=True,
|
||||
reuse_last_task_id=False,
|
||||
auto_connect_frameworks={'pytorch': False})
|
||||
|
||||
task.connect(trainer.args, name='parameters')
|
||||
|
||||
|
||||
def on_batch_end(trainer):
|
||||
train_loss = trainer.tloss
|
||||
_log_scalers(trainer.label_loss_items(train_loss), "train", trainer.epoch)
|
||||
|
||||
|
||||
def on_val_end(trainer):
|
||||
metrics = trainer.metrics
|
||||
val_losses = trainer.validator.loss
|
||||
val_loss_dict = trainer.label_loss_items(val_losses)
|
||||
_log_scalers(val_loss_dict, "val", trainer.epoch)
|
||||
_log_scalers(metrics, "metrics", trainer.epoch)
|
||||
|
||||
|
||||
callbacks = {
|
||||
"before_train": before_train,
|
||||
"on_val_end": on_val_end,
|
||||
"on_batch_end": on_batch_end,}
|
@ -1 +0,0 @@
|
||||
from .base import default_callbacks
|
Reference in New Issue
Block a user