@ -1,5 +1,8 @@
# Ultralytics YOLO 🚀, GPL-3.0 license
# Ultralytics YOLO 🚀, GPL-3.0 license
from ultralytics . yolo . utils import LOGGER , TESTS_RUNNING
import os
from pathlib import Path
from ultralytics . yolo . utils import LOGGER , RANK , TESTS_RUNNING , ops
from ultralytics . yolo . utils . torch_utils import get_flops , get_num_params
from ultralytics . yolo . utils . torch_utils import get_flops , get_num_params
try :
try :
@ -10,41 +13,308 @@ try:
except ( ImportError , AssertionError ) :
except ( ImportError , AssertionError ) :
comet_ml = None
comet_ml = None
COMET_MODE = os . getenv ( ' COMET_MODE ' , ' online ' )
COMET_MODEL_NAME = os . getenv ( ' COMET_MODEL_NAME ' , ' YOLOv8 ' )
# determines how many batches of image predictions to log from the validation set
COMET_EVAL_BATCH_LOGGING_INTERVAL = int ( os . getenv ( ' COMET_EVAL_BATCH_LOGGING_INTERVAL ' , 1 ) )
# determines whether to log confusion matrix every evaluation epoch
COMET_EVAL_LOG_CONFUSION_MATRIX = ( os . getenv ( ' COMET_EVAL_LOG_CONFUSION_MATRIX ' , ' true ' ) . lower ( ) == ' true ' )
# determines whether to log image predictions every evaluation epoch
COMET_EVAL_LOG_IMAGE_PREDICTIONS = ( os . getenv ( ' COMET_EVAL_LOG_IMAGE_PREDICTIONS ' , ' true ' ) . lower ( ) == ' true ' )
COMET_MAX_IMAGE_PREDICTIONS = int ( os . getenv ( ' COMET_MAX_IMAGE_PREDICTIONS ' , 100 ) )
def on_pretrain_routine_start ( trainer ) :
# ensures certain logging functions only run for supported tasks
COMET_SUPPORTED_TASKS = [ ' detect ' ]
# scales reported confidence scores (0.0-1.0) by this value
COMET_MAX_CONFIDENCE_SCORE = int ( os . getenv ( ' COMET_MAX_CONFIDENCE_SCORE ' , 100 ) )
# names of plots created by YOLOv8 that are logged to Comet
EVALUATION_PLOT_NAMES = ' F1_curve ' , ' P_curve ' , ' R_curve ' , ' PR_curve ' , ' confusion_matrix '
LABEL_PLOT_NAMES = ' labels ' , ' labels_correlogram '
_comet_image_prediction_count = 0
def _get_experiment_type ( mode , project_name ) :
if mode == ' offline ' :
return comet_ml . OfflineExperiment ( project_name = project_name )
return comet_ml . Experiment ( project_name = project_name )
def _create_experiment ( args ) :
# Ensures that the experiment object is only created in a single process during distributed training.
if RANK not in ( - 1 , 0 ) :
return
try :
try :
experiment = comet_ml . Experiment ( project_name = trainer . args . project or ' YOLOv8 ' )
experiment = _get_experiment_type ( COMET_MODE , args . project )
experiment . set_name ( trainer . args . name )
experiment . log_parameters ( vars ( args ) )
experiment . log_parameters ( vars ( trainer . args ) )
experiment . log_others ( {
' eval_batch_logging_interval ' : COMET_EVAL_BATCH_LOGGING_INTERVAL ,
' log_confusion_matrix ' : COMET_EVAL_LOG_CONFUSION_MATRIX ,
' log_image_predictions ' : COMET_EVAL_LOG_IMAGE_PREDICTIONS ,
' max_image_predictions ' : COMET_MAX_IMAGE_PREDICTIONS , } )
experiment . log_other ( ' Created from ' , ' yolov8 ' )
except Exception as e :
except Exception as e :
LOGGER . warning ( f ' WARNING ⚠️ Comet installed but not initialized correctly, not logging this run. { e } ' )
LOGGER . warning ( f ' WARNING ⚠️ Comet installed but not initialized correctly, not logging this run. { e } ' )
def _fetch_trainer_metadata ( trainer ) :
curr_epoch = trainer . epoch + 1
train_num_steps_per_epoch = len ( trainer . train_loader . dataset ) / / trainer . batch_size
curr_step = curr_epoch * train_num_steps_per_epoch
final_epoch = curr_epoch == trainer . epochs
save = trainer . args . save
save_period = trainer . args . save_period
save_interval = curr_epoch % save_period == 0
save_assets = save and save_period > 0 and save_interval and not final_epoch
return dict ( curr_epoch = curr_epoch , curr_step = curr_step , save_assets = save_assets , final_epoch = final_epoch )
def _scale_bounding_box_to_original_image_shape ( box , resized_image_shape , original_image_shape , ratio_pad ) :
""" YOLOv8 resizes images during training and the label values
are normalized based on this resized shape . This function rescales the
bounding box labels to the original image shape .
"""
resized_image_height , resized_image_width = resized_image_shape
# convert normalized xywh format predictions to xyxy in resized scale format
box = ops . xywhn2xyxy ( box , h = resized_image_height , w = resized_image_width )
# scale box predictions from resized image scale back to original image scale
box = ops . scale_boxes ( resized_image_shape , box , original_image_shape , ratio_pad )
# Convert bounding box format from xyxy to xywh for Comet logging
box = ops . xyxy2xywh ( box )
# adjust xy center to correspond top-left corner
box [ : 2 ] - = box [ 2 : ] / 2
box = box . tolist ( )
return box
def _format_ground_truth_annotations_for_detection ( img_idx , image_path , batch , class_name_map = None ) :
indices = batch [ ' batch_idx ' ] == img_idx
bboxes = batch [ ' bboxes ' ] [ indices ]
if len ( bboxes ) == 0 :
LOGGER . debug ( f ' COMET WARNING: Image: { image_path } has no bounding boxes labels ' )
return None
cls_labels = batch [ ' cls ' ] [ indices ] . squeeze ( 1 ) . tolist ( )
if class_name_map :
cls_labels = [ str ( class_name_map [ label ] ) for label in cls_labels ]
original_image_shape = batch [ ' ori_shape ' ] [ img_idx ]
resized_image_shape = batch [ ' resized_shape ' ] [ img_idx ]
ratio_pad = batch [ ' ratio_pad ' ] [ img_idx ]
data = [ ]
for box , label in zip ( bboxes , cls_labels ) :
box = _scale_bounding_box_to_original_image_shape ( box , resized_image_shape , original_image_shape , ratio_pad )
data . append ( { ' boxes ' : [ box ] , ' label ' : f ' gt_ { label } ' , ' score ' : COMET_MAX_CONFIDENCE_SCORE } )
return { ' name ' : ' ground_truth ' , ' data ' : data }
def _format_prediction_annotations_for_detection ( image_path , metadata , class_label_map = None ) :
stem = image_path . stem
image_id = int ( stem ) if stem . isnumeric ( ) else stem
predictions = metadata . get ( image_id )
if not predictions :
LOGGER . debug ( f ' COMET WARNING: Image: { image_path } has no bounding boxes predictions ' )
return None
data = [ ]
for prediction in predictions :
boxes = prediction [ ' bbox ' ]
score = prediction [ ' score ' ] * COMET_MAX_CONFIDENCE_SCORE
cls_label = prediction [ ' category_id ' ]
if class_label_map :
cls_label = str ( class_label_map [ cls_label ] )
data . append ( { ' boxes ' : [ boxes ] , ' label ' : cls_label , ' score ' : score } )
return { ' name ' : ' prediction ' , ' data ' : data }
def _fetch_annotations ( img_idx , image_path , batch , prediction_metadata_map , class_label_map ) :
ground_truth_annotations = _format_ground_truth_annotations_for_detection ( img_idx , image_path , batch ,
class_label_map )
prediction_annotations = _format_prediction_annotations_for_detection ( image_path , prediction_metadata_map ,
class_label_map )
annotations = [
annotation for annotation in [ ground_truth_annotations , prediction_annotations ] if annotation is not None ]
return [ annotations ] if annotations else None
def _create_prediction_metadata_map ( model_predictions ) :
pred_metadata_map = { }
for prediction in model_predictions :
pred_metadata_map . setdefault ( prediction [ ' image_id ' ] , [ ] )
pred_metadata_map [ prediction [ ' image_id ' ] ] . append ( prediction )
return pred_metadata_map
def _log_confusion_matrix ( experiment , trainer , curr_step , curr_epoch ) :
conf_mat = trainer . validator . confusion_matrix . matrix
names = list ( trainer . data [ ' names ' ] . values ( ) ) + [ ' background ' ]
experiment . log_confusion_matrix (
matrix = conf_mat ,
labels = names ,
max_categories = len ( names ) ,
epoch = curr_epoch ,
step = curr_step ,
)
def _log_images ( experiment , image_paths , curr_step , annotations = None ) :
if annotations :
for image_path , annotation in zip ( image_paths , annotations ) :
experiment . log_image ( image_path , name = image_path . stem , step = curr_step , annotations = annotation )
else :
for image_path in image_paths :
experiment . log_image ( image_path , name = image_path . stem , step = curr_step )
def _log_image_predictions ( experiment , validator , curr_step ) :
global _comet_image_prediction_count
task = validator . args . task
if task not in COMET_SUPPORTED_TASKS :
return
jdict = validator . jdict
if not jdict :
return
predictions_metadata_map = _create_prediction_metadata_map ( jdict )
dataloader = validator . dataloader
class_label_map = validator . names
for batch_idx , batch in enumerate ( dataloader ) :
if ( batch_idx + 1 ) % COMET_EVAL_BATCH_LOGGING_INTERVAL != 0 :
continue
image_paths = batch [ ' im_file ' ]
for img_idx , image_path in enumerate ( image_paths ) :
if _comet_image_prediction_count > = COMET_MAX_IMAGE_PREDICTIONS :
return
image_path = Path ( image_path )
annotations = _fetch_annotations (
img_idx ,
image_path ,
batch ,
predictions_metadata_map ,
class_label_map ,
)
_log_images (
experiment ,
[ image_path ] ,
curr_step ,
annotations = annotations ,
)
_comet_image_prediction_count + = 1
def _log_plots ( experiment , trainer ) :
plot_filenames = [ trainer . save_dir / f ' { plots } .png ' for plots in EVALUATION_PLOT_NAMES ]
_log_images ( experiment , plot_filenames , None )
label_plot_filenames = [ trainer . save_dir / f ' { labels } .jpg ' for labels in LABEL_PLOT_NAMES ]
_log_images ( experiment , label_plot_filenames , None )
def _log_model ( experiment , trainer ) :
experiment . log_model (
COMET_MODEL_NAME ,
file_or_folder = str ( trainer . best ) ,
file_name = ' best.pt ' ,
overwrite = True ,
)
def on_pretrain_routine_start ( trainer ) :
experiment = comet_ml . get_global_experiment ( )
if not experiment :
_create_experiment ( trainer . args )
def on_train_epoch_end ( trainer ) :
def on_train_epoch_end ( trainer ) :
experiment = comet_ml . get_global_experiment ( )
experiment = comet_ml . get_global_experiment ( )
if experiment :
if not experiment :
experiment . log_metrics ( trainer . label_loss_items ( trainer . tloss , prefix = ' train ' ) , step = trainer . epoch + 1 )
return
if trainer . epoch == 1 :
for f in trainer . save_dir . glob ( ' train_batch*.jpg ' ) :
metadata = _fetch_trainer_metadata ( trainer )
experiment . log_image ( f , name = f . stem , step = trainer . epoch + 1 )
curr_epoch = metadata [ ' curr_epoch ' ]
curr_step = metadata [ ' curr_step ' ]
experiment . log_metrics (
trainer . label_loss_items ( trainer . tloss , prefix = ' train ' ) ,
step = curr_step ,
epoch = curr_epoch ,
)
if curr_epoch == 1 :
_log_images ( experiment , trainer . save_dir . glob ( ' train_batch*.jpg ' ) , curr_step )
def on_fit_epoch_end ( trainer ) :
def on_fit_epoch_end ( trainer ) :
experiment = comet_ml . get_global_experiment ( )
experiment = comet_ml . get_global_experiment ( )
if experiment :
if not experiment :
experiment . log_metrics ( trainer . metrics , step = trainer . epoch + 1 )
return
if trainer . epoch == 0 :
model_info = {
metadata = _fetch_trainer_metadata ( trainer )
' model/parameters ' : get_num_params ( trainer . model ) ,
curr_epoch = metadata [ ' curr_epoch ' ]
' model/GFLOPs ' : round ( get_flops ( trainer . model ) , 3 ) ,
curr_step = metadata [ ' curr_step ' ]
' model/speed(ms) ' : round ( trainer . validator . speed [ ' inference ' ] , 3 ) }
save_assets = metadata [ ' save_assets ' ]
experiment . log_metrics ( model_info , step = trainer . epoch + 1 )
experiment . log_metrics ( trainer . metrics , step = curr_step , epoch = curr_epoch )
experiment . log_metrics ( trainer . lr , step = curr_step , epoch = curr_epoch )
if curr_epoch == 1 :
model_info = {
' model/parameters ' : get_num_params ( trainer . model ) ,
' model/GFLOPs ' : round ( get_flops ( trainer . model ) , 3 ) ,
' model/speed(ms) ' : round ( trainer . validator . speed [ ' inference ' ] , 3 ) }
experiment . log_metrics ( model_info , step = curr_step , epoch = curr_epoch )
if not save_assets :
return
_log_model ( experiment , trainer )
if COMET_EVAL_LOG_CONFUSION_MATRIX :
_log_confusion_matrix ( experiment , trainer , curr_step , curr_epoch )
if COMET_EVAL_LOG_IMAGE_PREDICTIONS :
_log_image_predictions ( experiment , trainer . validator , curr_step )
def on_train_end ( trainer ) :
def on_train_end ( trainer ) :
experiment = comet_ml . get_global_experiment ( )
experiment = comet_ml . get_global_experiment ( )
if experiment :
if not experiment :
experiment . log_model ( ' YOLOv8 ' , file_or_folder = str ( trainer . best ) , file_name = ' best.pt ' , overwrite = True )
return
metadata = _fetch_trainer_metadata ( trainer )
curr_epoch = metadata [ ' curr_epoch ' ]
curr_step = metadata [ ' curr_step ' ]
plots = trainer . args . plots
_log_model ( experiment , trainer )
if plots :
_log_plots ( experiment , trainer )
_log_confusion_matrix ( experiment , trainer , curr_step , curr_epoch )
_log_image_predictions ( experiment , trainer . validator , curr_step )
experiment . end ( )
global _comet_image_prediction_count
_comet_image_prediction_count = 0
callbacks = {
callbacks = {