ultralytics 8.0.33 security updates and fixes (#896)

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Mert Can Demir <validatedev@gmail.com>
This commit is contained in:
Glenn Jocher
2023-02-10 01:37:57 +04:00
committed by GitHub
parent a5a3ce88b3
commit 254adfa652
24 changed files with 87 additions and 61 deletions

View File

@ -67,7 +67,7 @@ import torch
import ultralytics
from ultralytics.nn.autobackend import check_class_names
from ultralytics.nn.modules import Detect, Segment
from ultralytics.nn.tasks import ClassificationModel, DetectionModel, SegmentationModel, guess_model_task
from ultralytics.nn.tasks import DetectionModel, SegmentationModel
from ultralytics.yolo.cfg import get_cfg
from ultralytics.yolo.data.dataloaders.stream_loaders import LoadImages
from ultralytics.yolo.data.utils import check_det_dataset, IMAGENET_MEAN, IMAGENET_STD

View File

@ -33,7 +33,7 @@ class YOLO:
A python interface which emulates a model-like behaviour by wrapping trainers.
"""
def __init__(self, model='yolov8n.yaml', type="v8") -> None:
def __init__(self, model='yolov8n.pt', type="v8") -> None:
"""
Initializes the YOLO object.

View File

@ -5,7 +5,6 @@ Simple training loop; Boilerplate that could apply to any arbitrary neural netwo
import os
import subprocess
import sys
import time
from collections import defaultdict
from copy import deepcopy
@ -29,10 +28,10 @@ from ultralytics.yolo.utils import (DEFAULT_CFG, LOGGER, RANK, SETTINGS, TQDM_BA
yaml_save)
from ultralytics.yolo.utils.autobatch import check_train_batch_size
from ultralytics.yolo.utils.checks import check_file, check_imgsz, print_args
from ultralytics.yolo.utils.dist import ddp_cleanup, generate_ddp_file, find_free_network_port
from ultralytics.yolo.utils.dist import ddp_cleanup, generate_ddp_command
from ultralytics.yolo.utils.files import get_latest_run, increment_path
from ultralytics.yolo.utils.torch_utils import (EarlyStopping, ModelEMA, de_parallel, init_seeds, one_cycle,
select_device, strip_optimizer, TORCH_1_9)
select_device, strip_optimizer)
class BaseTrainer:
@ -175,12 +174,7 @@ class BaseTrainer:
# Run subprocess if DDP training, else train normally
if world_size > 1 and "LOCAL_RANK" not in os.environ:
# cmd, file = generate_ddp_command(world_size, self) # security vulnerability in Snyk scans
file = generate_ddp_file(self) if sys.argv[0].endswith('yolo') else os.path.abspath(sys.argv[0])
torch_distributed_cmd = "torch.distributed.run" if TORCH_1_9 else "torch.distributed.launch"
cmd = [
sys.executable, "-m", torch_distributed_cmd, "--nproc_per_node", f"{world_size}", "--master_port",
f"{find_free_network_port()}", file] + sys.argv[1:]
cmd, file = generate_ddp_command(world_size, self) # security vulnerability in Snyk scans
try:
subprocess.run(cmd, check=True)
except Exception as e:

View File

@ -119,8 +119,7 @@ class BaseValidator:
self.args.workers = 0 # faster CPU val as time dominated by inference, not dataloading
if not pt:
self.args.rect = False
self.dataloader = self.dataloader or \
self.get_dataloader(self.data.get("val") or self.data.get("test"), self.args.batch)
self.dataloader = self.dataloader or self.get_dataloader(self.data.get(self.args.split), self.args.batch)
model.eval()
model.warmup(imgsz=(1 if pt else self.args.batch, 3, imgsz, imgsz)) # warmup