|
|
|
@ -24,29 +24,22 @@ def before_train(trainer):
|
|
|
|
|
output_uri=True,
|
|
|
|
|
reuse_last_task_id=False,
|
|
|
|
|
auto_connect_frameworks={'pytorch': False})
|
|
|
|
|
|
|
|
|
|
task.connect(trainer.args, name='parameters')
|
|
|
|
|
task.connect(dict(trainer.args), name='General')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def on_batch_end(trainer):
|
|
|
|
|
train_loss = trainer.tloss
|
|
|
|
|
_log_scalers(trainer.label_loss_items(train_loss), "train", trainer.epoch)
|
|
|
|
|
_log_scalers(trainer.label_loss_items(trainer.tloss, prefix="train"), "train", trainer.epoch)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def on_val_end(trainer):
|
|
|
|
|
metrics = trainer.metrics
|
|
|
|
|
val_losses = trainer.validator.loss
|
|
|
|
|
val_loss_dict = trainer.label_loss_items(val_losses)
|
|
|
|
|
_log_scalers(val_loss_dict, "val", trainer.epoch)
|
|
|
|
|
_log_scalers(metrics, "metrics", trainer.epoch)
|
|
|
|
|
|
|
|
|
|
_log_scalers(trainer.label_loss_items(trainer.validator.loss, prefix="val"), "val", trainer.epoch)
|
|
|
|
|
_log_scalers({k: v for k, v in trainer.metrics.items() if k.startswith("metrics")}, "metrics", trainer.epoch)
|
|
|
|
|
if trainer.epoch == 0:
|
|
|
|
|
infer_speed = trainer.validator.speed[1]
|
|
|
|
|
model_info = {
|
|
|
|
|
"inference_speed": infer_speed,
|
|
|
|
|
"inference_speed": trainer.validator.speed[1],
|
|
|
|
|
"flops@640": get_flops(trainer.model),
|
|
|
|
|
"params": get_num_params(trainer.model)}
|
|
|
|
|
_log_scalers(model_info, "model")
|
|
|
|
|
Task.current_task().connect(model_info, 'Model')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def on_train_end(trainer):
|
|
|
|
|