Update metrics names (#85)

This commit is contained in:
Glenn Jocher
2022-12-24 02:32:24 +01:00
committed by GitHub
parent 6432afc5f9
commit 248d54ca03
9 changed files with 30 additions and 36 deletions

View File

@ -24,29 +24,22 @@ def before_train(trainer):
output_uri=True,
reuse_last_task_id=False,
auto_connect_frameworks={'pytorch': False})
task.connect(trainer.args, name='parameters')
task.connect(dict(trainer.args), name='General')
def on_batch_end(trainer):
train_loss = trainer.tloss
_log_scalers(trainer.label_loss_items(train_loss), "train", trainer.epoch)
_log_scalers(trainer.label_loss_items(trainer.tloss, prefix="train"), "train", trainer.epoch)
def on_val_end(trainer):
metrics = trainer.metrics
val_losses = trainer.validator.loss
val_loss_dict = trainer.label_loss_items(val_losses)
_log_scalers(val_loss_dict, "val", trainer.epoch)
_log_scalers(metrics, "metrics", trainer.epoch)
_log_scalers(trainer.label_loss_items(trainer.validator.loss, prefix="val"), "val", trainer.epoch)
_log_scalers({k: v for k, v in trainer.metrics.items() if k.startswith("metrics")}, "metrics", trainer.epoch)
if trainer.epoch == 0:
infer_speed = trainer.validator.speed[1]
model_info = {
"inference_speed": infer_speed,
"inference_speed": trainer.validator.speed[1],
"flops@640": get_flops(trainer.model),
"params": get_num_params(trainer.model)}
_log_scalers(model_info, "model")
Task.current_task().connect(model_info, 'Model')
def on_train_end(trainer):

View File

@ -6,10 +6,11 @@ from omegaconf import DictConfig, OmegaConf
from ultralytics.yolo.utils.configs.hydra_patch import check_config_mismatch
def get_config(config: Union[str, DictConfig], overrides: Union[str, Dict] = {}):
def get_config(config: Union[str, DictConfig], overrides: Union[str, Dict]):
"""
Accepts yaml file name or DictConfig containing experiment configuration.
Returns training args namespace
:param overrides: Overrides str or Dict
:param config: Optional file name or DictConfig object
"""
if isinstance(config, (str, Path)):

View File

@ -514,7 +514,7 @@ class DetMetrics:
@property
def keys(self):
return ["metrics/precision(B)", "metrics/recall(B)", "metrics/mAP_0.5(B)", "metrics/mAP_0.5:0.95(B)"]
return ["metrics/precision(B)", "metrics/recall(B)", "metrics/mAP50(B)", "metrics/mAP50-95(B)"]
def mean_results(self):
return self.metric.mean_results()
@ -567,12 +567,12 @@ class SegmentMetrics:
return [
"metrics/precision(B)",
"metrics/recall(B)",
"metrics/mAP_0.5(B)",
"metrics/mAP_0.5:0.95(B)", # metrics
"metrics/mAP50(B)",
"metrics/mAP50-95(B)", # metrics
"metrics/precision(M)",
"metrics/recall(M)",
"metrics/mAP_0.5(M)",
"metrics/mAP_0.5:0.95(M)"]
"metrics/mAP50(M)",
"metrics/mAP50-95(M)"]
def mean_results(self):
return self.metric_box.mean_results() + self.metric_mask.mean_results()