ultralytics 8.0.89 SAM predict and auto-annotate (#2298)
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Yonghye Kwon <developer.0hye@gmail.com> Co-authored-by: Paula Derrenger <107626595+pderrenger@users.noreply.github.com> Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com> Co-authored-by: Laughing <61612323+Laughing-q@users.noreply.github.com> Co-authored-by: Ayush Chaurasia <ayush.chaurarsia@gmail.com> Co-authored-by: Snyk bot <snyk-bot@snyk.io> Co-authored-by: Laughing-q <1185102784@qq.com>
This commit is contained in:
@ -5,10 +5,11 @@ import torchvision
|
||||
|
||||
from ultralytics.nn.tasks import ClassificationModel, attempt_load_one_weight
|
||||
from ultralytics.yolo import v8
|
||||
from ultralytics.yolo.data import build_classification_dataloader
|
||||
from ultralytics.yolo.data import ClassificationDataset, build_dataloader
|
||||
from ultralytics.yolo.engine.trainer import BaseTrainer
|
||||
from ultralytics.yolo.utils import DEFAULT_CFG, LOGGER, RANK, colorstr
|
||||
from ultralytics.yolo.utils.torch_utils import is_parallel, strip_optimizer
|
||||
from ultralytics.yolo.utils.plotting import plot_images, plot_results
|
||||
from ultralytics.yolo.utils.torch_utils import is_parallel, strip_optimizer, torch_distributed_zero_first
|
||||
|
||||
|
||||
class ClassificationTrainer(BaseTrainer):
|
||||
@ -71,14 +72,16 @@ class ClassificationTrainer(BaseTrainer):
|
||||
|
||||
return # dont return ckpt. Classification doesn't support resume
|
||||
|
||||
def build_dataset(self, img_path, mode='train'):
|
||||
dataset = ClassificationDataset(root=img_path, imgsz=self.args.imgsz, augment=mode == 'train')
|
||||
return dataset
|
||||
|
||||
def get_dataloader(self, dataset_path, batch_size=16, rank=0, mode='train'):
|
||||
"""Returns PyTorch DataLoader with transforms to preprocess images for inference."""
|
||||
loader = build_classification_dataloader(path=dataset_path,
|
||||
imgsz=self.args.imgsz,
|
||||
batch_size=batch_size if mode == 'train' else (batch_size * 2),
|
||||
augment=mode == 'train',
|
||||
rank=rank,
|
||||
workers=self.args.workers)
|
||||
with torch_distributed_zero_first(rank): # init dataset *.cache only once if DDP
|
||||
dataset = self.build_dataset(dataset_path, mode)
|
||||
|
||||
loader = build_dataloader(dataset, batch_size, self.args.workers, rank=rank)
|
||||
# Attach inference transforms
|
||||
if mode != 'train':
|
||||
if is_parallel(self.model):
|
||||
@ -124,6 +127,10 @@ class ClassificationTrainer(BaseTrainer):
|
||||
"""Resumes training from a given checkpoint."""
|
||||
pass
|
||||
|
||||
def plot_metrics(self):
|
||||
"""Plots metrics from a CSV file."""
|
||||
plot_results(file=self.csv, classify=True) # save results.png
|
||||
|
||||
def final_eval(self):
|
||||
"""Evaluate trained model and save validation results."""
|
||||
for f in self.last, self.best:
|
||||
@ -138,6 +145,13 @@ class ClassificationTrainer(BaseTrainer):
|
||||
# self.run_callbacks('on_fit_epoch_end')
|
||||
LOGGER.info(f"Results saved to {colorstr('bold', self.save_dir)}")
|
||||
|
||||
def plot_training_samples(self, batch, ni):
|
||||
"""Plots training samples with their annotations."""
|
||||
plot_images(images=batch['img'],
|
||||
batch_idx=torch.arange(len(batch['img'])),
|
||||
cls=batch['cls'].squeeze(-1),
|
||||
fname=self.save_dir / f'train_batch{ni}.jpg')
|
||||
|
||||
|
||||
def train(cfg=DEFAULT_CFG, use_python=False):
|
||||
"""Train the YOLO classification model."""
|
||||
|
||||
Reference in New Issue
Block a user