ultralytics 8.0.89 SAM predict and auto-annotate (#2298)

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Yonghye Kwon <developer.0hye@gmail.com>
Co-authored-by: Paula Derrenger <107626595+pderrenger@users.noreply.github.com>
Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
Co-authored-by: Laughing <61612323+Laughing-q@users.noreply.github.com>
Co-authored-by: Ayush Chaurasia <ayush.chaurarsia@gmail.com>
Co-authored-by: Snyk bot <snyk-bot@snyk.io>
Co-authored-by: Laughing-q <1185102784@qq.com>
This commit is contained in:
Glenn Jocher
2023-04-28 00:36:50 +02:00
committed by GitHub
parent 3e118f6170
commit 243fc4b1fe
44 changed files with 2915 additions and 440 deletions

View File

@ -9,8 +9,14 @@ from ultralytics.yolo.utils import DEFAULT_CFG, ROOT
class ClassificationPredictor(BasePredictor):
def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None):
super().__init__(cfg, overrides, _callbacks)
self.args.task = 'classify'
def preprocess(self, img):
"""Converts input image to model-compatible data type."""
if not isinstance(img, torch.Tensor):
img = torch.stack([self.transforms(im) for im in img], dim=0)
img = (img if isinstance(img, torch.Tensor) else torch.from_numpy(img)).to(self.model.device)
return img.half() if self.model.fp16 else img.float() # uint8 to fp16/32
@ -19,7 +25,7 @@ class ClassificationPredictor(BasePredictor):
results = []
for i, pred in enumerate(preds):
orig_img = orig_imgs[i] if isinstance(orig_imgs, list) else orig_imgs
path, _, _, _, _ = self.batch
path = self.batch[0]
img_path = path[i] if isinstance(path, list) else path
results.append(Results(orig_img=orig_img, path=img_path, names=self.model.names, probs=pred))

View File

@ -5,10 +5,11 @@ import torchvision
from ultralytics.nn.tasks import ClassificationModel, attempt_load_one_weight
from ultralytics.yolo import v8
from ultralytics.yolo.data import build_classification_dataloader
from ultralytics.yolo.data import ClassificationDataset, build_dataloader
from ultralytics.yolo.engine.trainer import BaseTrainer
from ultralytics.yolo.utils import DEFAULT_CFG, LOGGER, RANK, colorstr
from ultralytics.yolo.utils.torch_utils import is_parallel, strip_optimizer
from ultralytics.yolo.utils.plotting import plot_images, plot_results
from ultralytics.yolo.utils.torch_utils import is_parallel, strip_optimizer, torch_distributed_zero_first
class ClassificationTrainer(BaseTrainer):
@ -71,14 +72,16 @@ class ClassificationTrainer(BaseTrainer):
return # dont return ckpt. Classification doesn't support resume
def build_dataset(self, img_path, mode='train'):
dataset = ClassificationDataset(root=img_path, imgsz=self.args.imgsz, augment=mode == 'train')
return dataset
def get_dataloader(self, dataset_path, batch_size=16, rank=0, mode='train'):
"""Returns PyTorch DataLoader with transforms to preprocess images for inference."""
loader = build_classification_dataloader(path=dataset_path,
imgsz=self.args.imgsz,
batch_size=batch_size if mode == 'train' else (batch_size * 2),
augment=mode == 'train',
rank=rank,
workers=self.args.workers)
with torch_distributed_zero_first(rank): # init dataset *.cache only once if DDP
dataset = self.build_dataset(dataset_path, mode)
loader = build_dataloader(dataset, batch_size, self.args.workers, rank=rank)
# Attach inference transforms
if mode != 'train':
if is_parallel(self.model):
@ -124,6 +127,10 @@ class ClassificationTrainer(BaseTrainer):
"""Resumes training from a given checkpoint."""
pass
def plot_metrics(self):
"""Plots metrics from a CSV file."""
plot_results(file=self.csv, classify=True) # save results.png
def final_eval(self):
"""Evaluate trained model and save validation results."""
for f in self.last, self.best:
@ -138,6 +145,13 @@ class ClassificationTrainer(BaseTrainer):
# self.run_callbacks('on_fit_epoch_end')
LOGGER.info(f"Results saved to {colorstr('bold', self.save_dir)}")
def plot_training_samples(self, batch, ni):
"""Plots training samples with their annotations."""
plot_images(images=batch['img'],
batch_idx=torch.arange(len(batch['img'])),
cls=batch['cls'].squeeze(-1),
fname=self.save_dir / f'train_batch{ni}.jpg')
def train(cfg=DEFAULT_CFG, use_python=False):
"""Train the YOLO classification model."""

View File

@ -1,9 +1,12 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
from ultralytics.yolo.data import build_classification_dataloader
import torch
from ultralytics.yolo.data import ClassificationDataset, build_dataloader
from ultralytics.yolo.engine.validator import BaseValidator
from ultralytics.yolo.utils import DEFAULT_CFG, LOGGER
from ultralytics.yolo.utils.metrics import ClassifyMetrics, ConfusionMatrix
from ultralytics.yolo.utils.plotting import plot_images
class ClassificationValidator(BaseValidator):
@ -52,20 +55,36 @@ class ClassificationValidator(BaseValidator):
self.metrics.process(self.targets, self.pred)
return self.metrics.results_dict
def build_dataset(self, img_path):
dataset = ClassificationDataset(root=img_path, imgsz=self.args.imgsz, augment=False)
return dataset
def get_dataloader(self, dataset_path, batch_size):
"""Builds and returns a data loader for classification tasks with given parameters."""
return build_classification_dataloader(path=dataset_path,
imgsz=self.args.imgsz,
batch_size=batch_size,
augment=False,
shuffle=False,
workers=self.args.workers)
dataset = self.build_dataset(dataset_path)
return build_dataloader(dataset, batch_size, self.args.workers, rank=-1)
def print_results(self):
"""Prints evaluation metrics for YOLO object detection model."""
pf = '%22s' + '%11.3g' * len(self.metrics.keys) # print format
LOGGER.info(pf % ('all', self.metrics.top1, self.metrics.top5))
def plot_val_samples(self, batch, ni):
"""Plot validation image samples."""
plot_images(images=batch['img'],
batch_idx=torch.arange(len(batch['img'])),
cls=batch['cls'].squeeze(-1),
fname=self.save_dir / f'val_batch{ni}_labels.jpg',
names=self.names)
def plot_predictions(self, batch, preds, ni):
"""Plots predicted bounding boxes on input images and saves the result."""
plot_images(batch['img'],
batch_idx=torch.arange(len(batch['img'])),
cls=torch.argmax(preds, dim=1),
fname=self.save_dir / f'val_batch{ni}_pred.jpg',
names=self.names) # pred
def val(cfg=DEFAULT_CFG, use_python=False):
"""Validate YOLO model using custom data."""

View File

@ -9,13 +9,6 @@ from ultralytics.yolo.utils import DEFAULT_CFG, ROOT, ops
class DetectionPredictor(BasePredictor):
def preprocess(self, img):
"""Convert an image to PyTorch tensor and normalize pixel values."""
img = (img if isinstance(img, torch.Tensor) else torch.from_numpy(img)).to(self.model.device)
img = img.half() if self.model.fp16 else img.float() # uint8 to fp16/32
img /= 255 # 0 - 255 to 0.0 - 1.0
return img
def postprocess(self, preds, img, orig_imgs):
"""Postprocesses predictions and returns a list of Results objects."""
preds = ops.non_max_suppression(preds,
@ -30,7 +23,7 @@ class DetectionPredictor(BasePredictor):
orig_img = orig_imgs[i] if isinstance(orig_imgs, list) else orig_imgs
if not isinstance(orig_imgs, torch.Tensor):
pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape)
path, _, _, _, _ = self.batch
path = self.batch[0]
img_path = path[i] if isinstance(path, list) else path
results.append(Results(orig_img=orig_img, path=img_path, names=self.model.names, boxes=pred))
return results

View File

@ -7,41 +7,63 @@ import torch.nn as nn
from ultralytics.nn.tasks import DetectionModel
from ultralytics.yolo import v8
from ultralytics.yolo.data import build_dataloader
from ultralytics.yolo.data import build_dataloader, build_yolo_dataset
from ultralytics.yolo.data.dataloaders.v5loader import create_dataloader
from ultralytics.yolo.engine.trainer import BaseTrainer
from ultralytics.yolo.utils import DEFAULT_CFG, RANK, colorstr
from ultralytics.yolo.utils import DEFAULT_CFG, LOGGER, RANK, colorstr
from ultralytics.yolo.utils.loss import BboxLoss
from ultralytics.yolo.utils.ops import xywh2xyxy
from ultralytics.yolo.utils.plotting import plot_images, plot_labels, plot_results
from ultralytics.yolo.utils.tal import TaskAlignedAssigner, dist2bbox, make_anchors
from ultralytics.yolo.utils.torch_utils import de_parallel
from ultralytics.yolo.utils.torch_utils import de_parallel, torch_distributed_zero_first
# BaseTrainer python usage
class DetectionTrainer(BaseTrainer):
def build_dataset(self, img_path, mode='train', batch=None):
"""Build YOLO Dataset
Args:
img_path (str): Path to the folder containing images.
mode (str): `train` mode or `val` mode, users are able to customize different augmentations for each mode.
batch_size (int, optional): Size of batches, this is for `rect`. Defaults to None.
"""
gs = max(int(de_parallel(self.model).stride.max() if self.model else 0), 32)
return build_yolo_dataset(self.args, img_path, batch, self.data, mode=mode, rect=mode == 'val', stride=gs)
def get_dataloader(self, dataset_path, batch_size, rank=0, mode='train'):
"""TODO: manage splits differently."""
# Calculate stride - check if model is initialized
gs = max(int(de_parallel(self.model).stride.max() if self.model else 0), 32)
return create_dataloader(path=dataset_path,
imgsz=self.args.imgsz,
batch_size=batch_size,
stride=gs,
hyp=vars(self.args),
augment=mode == 'train',
cache=self.args.cache,
pad=0 if mode == 'train' else 0.5,
rect=self.args.rect or mode == 'val',
rank=rank,
workers=self.args.workers,
close_mosaic=self.args.close_mosaic != 0,
prefix=colorstr(f'{mode}: '),
shuffle=mode == 'train',
seed=self.args.seed)[0] if self.args.v5loader else \
build_dataloader(self.args, batch_size, img_path=dataset_path, stride=gs, rank=rank, mode=mode,
rect=mode == 'val', data_info=self.data)[0]
if self.args.v5loader:
LOGGER.warning("WARNING ⚠️ 'v5loader' feature is deprecated and will be removed soon. You can train using "
'the default YOLOv8 dataloader instead, no argument is needed.')
gs = max(int(de_parallel(self.model).stride.max() if self.model else 0), 32)
return create_dataloader(path=dataset_path,
imgsz=self.args.imgsz,
batch_size=batch_size,
stride=gs,
hyp=vars(self.args),
augment=mode == 'train',
cache=self.args.cache,
pad=0 if mode == 'train' else 0.5,
rect=self.args.rect or mode == 'val',
rank=rank,
workers=self.args.workers,
close_mosaic=self.args.close_mosaic != 0,
prefix=colorstr(f'{mode}: '),
shuffle=mode == 'train',
seed=self.args.seed)[0]
assert mode in ['train', 'val']
with torch_distributed_zero_first(rank): # init dataset *.cache only once if DDP
dataset = self.build_dataset(dataset_path, mode, batch_size)
shuffle = mode == 'train'
if getattr(dataset, 'rect', False) and shuffle:
LOGGER.warning("WARNING ⚠️ 'rect=True' is incompatible with DataLoader shuffle, setting shuffle=False")
shuffle = False
workers = self.args.workers if mode == 'train' else self.args.workers * 2
dataloader = build_dataloader(dataset, batch_size, workers, shuffle, rank)
return dataloader
def preprocess_batch(self, batch):
"""Preprocesses a batch of images by scaling and converting to float."""

View File

@ -6,7 +6,7 @@ from pathlib import Path
import numpy as np
import torch
from ultralytics.yolo.data import build_dataloader
from ultralytics.yolo.data import build_dataloader, build_yolo_dataset
from ultralytics.yolo.data.dataloaders.v5loader import create_dataloader
from ultralytics.yolo.engine.validator import BaseValidator
from ultralytics.yolo.utils import DEFAULT_CFG, LOGGER, colorstr, ops
@ -171,24 +171,40 @@ class DetectionValidator(BaseValidator):
correct[matches[:, 1].astype(int), i] = True
return torch.tensor(correct, dtype=torch.bool, device=detections.device)
def build_dataset(self, img_path, mode='val', batch=None):
"""Build YOLO Dataset
Args:
img_path (str): Path to the folder containing images.
mode (str): `train` mode or `val` mode, users are able to customize different augmentations for each mode.
batch_size (int, optional): Size of batches, this is for `rect`. Defaults to None.
"""
gs = max(int(de_parallel(self.model).stride if self.model else 0), 32)
return build_yolo_dataset(self.args, img_path, batch, self.data, mode=mode, stride=gs)
def get_dataloader(self, dataset_path, batch_size):
"""TODO: manage splits differently."""
# Calculate stride - check if model is initialized
gs = max(int(de_parallel(self.model).stride if self.model else 0), 32)
return create_dataloader(path=dataset_path,
imgsz=self.args.imgsz,
batch_size=batch_size,
stride=gs,
hyp=vars(self.args),
cache=False,
pad=0.5,
rect=self.args.rect,
workers=self.args.workers,
prefix=colorstr(f'{self.args.mode}: '),
shuffle=False,
seed=self.args.seed)[0] if self.args.v5loader else \
build_dataloader(self.args, batch_size, img_path=dataset_path, stride=gs, data_info=self.data,
mode='val')[0]
if self.args.v5loader:
LOGGER.warning("WARNING ⚠️ 'v5loader' feature is deprecated and will be removed soon. You can train using "
'the default YOLOv8 dataloader instead, no argument is needed.')
gs = max(int(de_parallel(self.model).stride if self.model else 0), 32)
return create_dataloader(path=dataset_path,
imgsz=self.args.imgsz,
batch_size=batch_size,
stride=gs,
hyp=vars(self.args),
cache=False,
pad=0.5,
rect=self.args.rect,
workers=self.args.workers,
prefix=colorstr(f'{self.args.mode}: '),
shuffle=False,
seed=self.args.seed)[0]
dataset = self.build_dataset(dataset_path, batch=batch_size, mode='val')
dataloader = build_dataloader(dataset, batch_size, self.args.workers, shuffle=False, rank=-1)
return dataloader
def plot_val_samples(self, batch, ni):
"""Plot validation image samples."""

View File

@ -7,6 +7,10 @@ from ultralytics.yolo.v8.detect.predict import DetectionPredictor
class PosePredictor(DetectionPredictor):
def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None):
super().__init__(cfg, overrides, _callbacks)
self.args.task = 'pose'
def postprocess(self, preds, img, orig_img):
"""Return detection results for a given input image or list of images."""
preds = ops.non_max_suppression(preds,
@ -24,7 +28,7 @@ class PosePredictor(DetectionPredictor):
pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], shape).round()
pred_kpts = pred[:, 6:].view(len(pred), *self.model.kpt_shape) if len(pred) else pred[:, 6:]
pred_kpts = ops.scale_coords(img.shape[2:], pred_kpts, shape)
path, _, _, _, _ = self.batch
path = self.batch[0]
img_path = path[i] if isinstance(path, list) else path
results.append(
Results(orig_img=orig_img,

View File

@ -9,6 +9,10 @@ from ultralytics.yolo.v8.detect.predict import DetectionPredictor
class SegmentationPredictor(DetectionPredictor):
def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None):
super().__init__(cfg, overrides, _callbacks)
self.args.task = 'segment'
def postprocess(self, preds, img, orig_imgs):
"""TODO: filter by classes."""
p = ops.non_max_suppression(preds[0],
@ -22,7 +26,7 @@ class SegmentationPredictor(DetectionPredictor):
proto = preds[1][-1] if len(preds[1]) == 3 else preds[1] # second output is len 3 if pt, but only 1 if exported
for i, pred in enumerate(p):
orig_img = orig_imgs[i] if isinstance(orig_imgs, list) else orig_imgs
path, _, _, _, _ = self.batch
path = self.batch[0]
img_path = path[i] if isinstance(path, list) else path
if not len(pred): # save empty boxes
results.append(Results(orig_img=orig_img, path=img_path, names=self.model.names, boxes=pred[:, :6]))