ultralytics 8.0.89 SAM predict and auto-annotate (#2298)

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Yonghye Kwon <developer.0hye@gmail.com>
Co-authored-by: Paula Derrenger <107626595+pderrenger@users.noreply.github.com>
Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
Co-authored-by: Laughing <61612323+Laughing-q@users.noreply.github.com>
Co-authored-by: Ayush Chaurasia <ayush.chaurarsia@gmail.com>
Co-authored-by: Snyk bot <snyk-bot@snyk.io>
Co-authored-by: Laughing-q <1185102784@qq.com>
This commit is contained in:
Glenn Jocher
2023-04-28 00:36:50 +02:00
committed by GitHub
parent 3e118f6170
commit 243fc4b1fe
44 changed files with 2915 additions and 440 deletions

View File

@ -1,9 +1,9 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
from .base import BaseDataset
from .build import build_classification_dataloader, build_dataloader, load_inference_source
from .build import build_dataloader, build_yolo_dataset, load_inference_source
from .dataset import ClassificationDataset, SemanticDataset, YOLODataset
from .dataset_wrappers import MixAndRectDataset
__all__ = ('BaseDataset', 'ClassificationDataset', 'MixAndRectDataset', 'SemanticDataset', 'YOLODataset',
'build_classification_dataloader', 'build_dataloader', 'load_inference_source')
'build_yolo_dataset', 'build_dataloader', 'load_inference_source')

View File

@ -0,0 +1,42 @@
from pathlib import Path
from ultralytics import YOLO
from ultralytics.vit.sam import PromptPredictor, build_sam
from ultralytics.yolo.utils.torch_utils import select_device
def auto_annotate(data, det_model='yolov8x.pt', sam_model='sam_b.pt', device='', output_dir=None):
device = select_device(device)
det_model = YOLO(det_model)
sam_model = build_sam(sam_model)
det_model.to(device)
sam_model.to(device)
if not output_dir:
output_dir = Path(str(data)).parent / 'labels'
Path(output_dir).mkdir(exist_ok=True, parents=True)
prompt_predictor = PromptPredictor(sam_model)
det_results = det_model(data, stream=True)
for result in det_results:
boxes = result.boxes.xyxy # Boxes object for bbox outputs
class_ids = result.boxes.cls.int().tolist() # noqa
prompt_predictor.set_image(result.orig_img)
masks, _, _ = prompt_predictor.predict_torch(
point_coords=None,
point_labels=None,
boxes=prompt_predictor.transform.apply_boxes_torch(boxes, result.orig_shape[:2]),
multimask_output=False,
)
result.update(masks=masks.squeeze(1))
segments = result.masks.xyn # noqa
with open(str(Path(output_dir) / Path(result.path).stem) + '.txt', 'w') as f:
for i in range(len(segments)):
s = segments[i]
if len(s) == 0:
continue
segment = map(str, segments[i].reshape(-1).tolist())
f.write(f'{class_ids[i]} ' + ' '.join(segment) + '\n')

View File

@ -24,17 +24,17 @@ class BaseDataset(Dataset):
Base dataset class for loading and processing image data.
Args:
img_path (str): Image path.
imgsz (int): Target image size for resizing. Default is 640.
cache (bool): Cache images in memory or on disk for faster loading. Default is False.
augment (bool): Apply data augmentation. Default is True.
hyp (dict): Dictionary of hyperparameters for data augmentation. Default is None.
prefix (str): Prefix for file paths. Default is an empty string.
rect (bool): Enable rectangular training. Default is False.
batch_size (int): Batch size for rectangular training. Default is None.
stride (int): Stride for rectangular training. Default is 32.
pad (float): Padding for rectangular training. Default is 0.5.
single_cls (bool): Use a single class for all labels. Default is False.
img_path (str): Path to the folder containing images.
imgsz (int, optional): Image size. Defaults to 640.
cache (bool, optional): Cache images to RAM or disk during training. Defaults to False.
augment (bool, optional): If True, data augmentation is applied. Defaults to True.
hyp (dict, optional): Hyperparameters to apply data augmentation. Defaults to None.
prefix (str, optional): Prefix to print in log messages. Defaults to ''.
rect (bool, optional): If True, rectangular training is used. Defaults to False.
batch_size (int, optional): Size of batches. Defaults to None.
stride (int, optional): Stride. Defaults to 32.
pad (float, optional): Padding. Defaults to 0.0.
single_cls (bool, optional): If True, single class training is used. Defaults to False.
classes (list): List of included classes. Default is None.
Attributes:

View File

@ -14,9 +14,8 @@ from ultralytics.yolo.data.dataloaders.stream_loaders import (LOADERS, LoadImage
from ultralytics.yolo.data.utils import IMG_FORMATS, VID_FORMATS
from ultralytics.yolo.utils.checks import check_file
from ..utils import LOGGER, RANK, colorstr
from ..utils.torch_utils import torch_distributed_zero_first
from .dataset import ClassificationDataset, YOLODataset
from ..utils import RANK, colorstr
from .dataset import YOLODataset
from .utils import PIN_MEMORY
@ -70,34 +69,31 @@ def seed_worker(worker_id): # noqa
random.seed(worker_seed)
def build_dataloader(cfg, batch, img_path, data_info, stride=32, rect=False, rank=-1, mode='train'):
"""Return an InfiniteDataLoader or DataLoader for training or validation set."""
assert mode in ['train', 'val']
shuffle = mode == 'train'
if cfg.rect and shuffle:
LOGGER.warning("WARNING ⚠️ 'rect=True' is incompatible with DataLoader shuffle, setting shuffle=False")
shuffle = False
with torch_distributed_zero_first(rank): # init dataset *.cache only once if DDP
dataset = YOLODataset(
img_path=img_path,
imgsz=cfg.imgsz,
batch_size=batch,
augment=mode == 'train', # augmentation
hyp=cfg, # TODO: probably add a get_hyps_from_cfg function
rect=cfg.rect or rect, # rectangular batches
cache=cfg.cache or None,
single_cls=cfg.single_cls or False,
stride=int(stride),
pad=0.0 if mode == 'train' else 0.5,
prefix=colorstr(f'{mode}: '),
use_segments=cfg.task == 'segment',
use_keypoints=cfg.task == 'pose',
classes=cfg.classes,
data=data_info)
def build_yolo_dataset(cfg, img_path, batch, data_info, mode='train', rect=False, stride=32):
"""Build YOLO Dataset"""
dataset = YOLODataset(
img_path=img_path,
imgsz=cfg.imgsz,
batch_size=batch,
augment=mode == 'train', # augmentation
hyp=cfg, # TODO: probably add a get_hyps_from_cfg function
rect=cfg.rect or rect, # rectangular batches
cache=cfg.cache or None,
single_cls=cfg.single_cls or False,
stride=int(stride),
pad=0.0 if mode == 'train' else 0.5,
prefix=colorstr(f'{mode}: '),
use_segments=cfg.task == 'segment',
use_keypoints=cfg.task == 'pose',
classes=cfg.classes,
data=data_info)
return dataset
def build_dataloader(dataset, batch, workers, shuffle=True, rank=-1):
"""Return an InfiniteDataLoader or DataLoader for training or validation set."""
batch = min(batch, len(dataset))
nd = torch.cuda.device_count() # number of CUDA devices
workers = cfg.workers if mode == 'train' else cfg.workers * 2
nw = min([os.cpu_count() // max(nd, 1), batch if batch > 1 else 0, workers]) # number of workers
sampler = None if rank == -1 else distributed.DistributedSampler(dataset, shuffle=shuffle)
generator = torch.Generator()
@ -110,36 +106,7 @@ def build_dataloader(cfg, batch, img_path, data_info, stride=32, rect=False, ran
pin_memory=PIN_MEMORY,
collate_fn=getattr(dataset, 'collate_fn', None),
worker_init_fn=seed_worker,
generator=generator), dataset
# Build classification
# TODO: using cfg like `build_dataloader`
def build_classification_dataloader(path,
imgsz=224,
batch_size=16,
augment=True,
cache=False,
rank=-1,
workers=8,
shuffle=True):
"""Returns Dataloader object to be used with YOLOv5 Classifier."""
with torch_distributed_zero_first(rank): # init dataset *.cache only once if DDP
dataset = ClassificationDataset(root=path, imgsz=imgsz, augment=augment, cache=cache)
batch_size = min(batch_size, len(dataset))
nd = torch.cuda.device_count()
nw = min([os.cpu_count() // max(nd, 1), batch_size if batch_size > 1 else 0, workers])
sampler = None if rank == -1 else distributed.DistributedSampler(dataset, shuffle=shuffle)
generator = torch.Generator()
generator.manual_seed(6148914691236517205 + RANK)
return InfiniteDataLoader(dataset,
batch_size=batch_size,
shuffle=shuffle and sampler is None,
num_workers=nw,
sampler=sampler,
pin_memory=PIN_MEMORY,
worker_init_fn=seed_worker,
generator=generator) # or DataLoader(persistent_workers=True)
generator=generator)
def check_source(source):
@ -168,7 +135,7 @@ def check_source(source):
return source, webcam, screenshot, from_img, in_memory, tensor
def load_inference_source(source=None, transforms=None, imgsz=640, vid_stride=1, stride=32, auto=True):
def load_inference_source(source=None, imgsz=640, vid_stride=1):
"""
Loads an inference source for object detection and applies necessary transformations.
@ -192,23 +159,13 @@ def load_inference_source(source=None, transforms=None, imgsz=640, vid_stride=1,
elif in_memory:
dataset = source
elif webcam:
dataset = LoadStreams(source,
imgsz=imgsz,
stride=stride,
auto=auto,
transforms=transforms,
vid_stride=vid_stride)
dataset = LoadStreams(source, imgsz=imgsz, vid_stride=vid_stride)
elif screenshot:
dataset = LoadScreenshots(source, imgsz=imgsz, stride=stride, auto=auto, transforms=transforms)
dataset = LoadScreenshots(source, imgsz=imgsz)
elif from_img:
dataset = LoadPilAndNumpy(source, imgsz=imgsz, stride=stride, auto=auto, transforms=transforms)
dataset = LoadPilAndNumpy(source, imgsz=imgsz)
else:
dataset = LoadImages(source,
imgsz=imgsz,
stride=stride,
auto=auto,
transforms=transforms,
vid_stride=vid_stride)
dataset = LoadImages(source, imgsz=imgsz, vid_stride=vid_stride)
# Attach source types to the dataset
setattr(dataset, 'source_type', source_type)

View File

@ -15,7 +15,6 @@ import requests
import torch
from PIL import Image
from ultralytics.yolo.data.augment import LetterBox
from ultralytics.yolo.data.utils import IMG_FORMATS, VID_FORMATS
from ultralytics.yolo.utils import LOGGER, ROOT, is_colab, is_kaggle, ops
from ultralytics.yolo.utils.checks import check_requirements
@ -31,12 +30,11 @@ class SourceTypes:
class LoadStreams:
# YOLOv8 streamloader, i.e. `yolo predict source='rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP streams`
def __init__(self, sources='file.streams', imgsz=640, stride=32, auto=True, transforms=None, vid_stride=1):
def __init__(self, sources='file.streams', imgsz=640, vid_stride=1):
"""Initialize instance variables and check for consistent input stream shapes."""
torch.backends.cudnn.benchmark = True # faster for fixed-size inference
self.mode = 'stream'
self.imgsz = imgsz
self.stride = stride
self.vid_stride = vid_stride # video frame-rate stride
sources = Path(sources).read_text().rsplit() if os.path.isfile(sources) else [sources]
n = len(sources)
@ -72,10 +70,6 @@ class LoadStreams:
LOGGER.info('') # newline
# Check for common shapes
s = np.stack([LetterBox(imgsz, auto, stride=stride)(image=x).shape for x in self.imgs])
self.rect = np.unique(s, axis=0).shape[0] == 1 # rect inference if all shapes equal
self.auto = auto and self.rect
self.transforms = transforms # optional
self.bs = self.__len__()
if not self.rect:
@ -110,14 +104,7 @@ class LoadStreams:
raise StopIteration
im0 = self.imgs.copy()
if self.transforms:
im = np.stack([self.transforms(x) for x in im0]) # transforms
else:
im = np.stack([LetterBox(self.imgsz, self.auto, stride=self.stride)(image=x) for x in im0])
im = im[..., ::-1].transpose((0, 3, 1, 2)) # BGR to RGB, BHWC to BCHW
im = np.ascontiguousarray(im) # contiguous
return self.sources, im, im0, None, ''
return self.sources, im0, None, ''
def __len__(self):
"""Return the length of the sources object."""
@ -126,7 +113,7 @@ class LoadStreams:
class LoadScreenshots:
# YOLOv8 screenshot dataloader, i.e. `yolo predict source=screen`
def __init__(self, source, imgsz=640, stride=32, auto=True, transforms=None):
def __init__(self, source, imgsz=640):
"""source = [screen_number left top width height] (pixels)."""
check_requirements('mss')
import mss # noqa
@ -140,9 +127,6 @@ class LoadScreenshots:
elif len(params) == 5:
self.screen, left, top, width, height = (int(x) for x in params)
self.imgsz = imgsz
self.stride = stride
self.transforms = transforms
self.auto = auto
self.mode = 'stream'
self.frame = 0
self.sct = mss.mss()
@ -165,19 +149,13 @@ class LoadScreenshots:
im0 = np.array(self.sct.grab(self.monitor))[:, :, :3] # [:, :, :3] BGRA to BGR
s = f'screen {self.screen} (LTWH): {self.left},{self.top},{self.width},{self.height}: '
if self.transforms:
im = self.transforms(im0) # transforms
else:
im = LetterBox(self.imgsz, self.auto, stride=self.stride)(image=im0)
im = im.transpose((2, 0, 1))[::-1] # HWC to CHW, BGR to RGB
im = np.ascontiguousarray(im) # contiguous
self.frame += 1
return str(self.screen), im, im0, None, s # screen, img, original img, im0s, s
return str(self.screen), im0, None, s # screen, img, original img, im0s, s
class LoadImages:
# YOLOv8 image/video dataloader, i.e. `yolo predict source=image.jpg/vid.mp4`
def __init__(self, path, imgsz=640, stride=32, auto=True, transforms=None, vid_stride=1):
def __init__(self, path, imgsz=640, vid_stride=1):
"""Initialize the Dataloader and raise FileNotFoundError if file not found."""
if isinstance(path, str) and Path(path).suffix == '.txt': # *.txt file with img/vid/dir on each line
path = Path(path).read_text().rsplit()
@ -198,13 +176,10 @@ class LoadImages:
ni, nv = len(images), len(videos)
self.imgsz = imgsz
self.stride = stride
self.files = images + videos
self.nf = ni + nv # number of files
self.video_flag = [False] * ni + [True] * nv
self.mode = 'image'
self.auto = auto
self.transforms = transforms # optional
self.vid_stride = vid_stride # video frame-rate stride
self.bs = 1
if any(videos):
@ -254,14 +229,7 @@ class LoadImages:
raise FileNotFoundError(f'Image Not Found {path}')
s = f'image {self.count}/{self.nf} {path}: '
if self.transforms:
im = self.transforms(im0) # transforms
else:
im = LetterBox(self.imgsz, self.auto, stride=self.stride)(image=im0)
im = im.transpose((2, 0, 1))[::-1] # HWC to CHW, BGR to RGB
im = np.ascontiguousarray(im) # contiguous
return path, im, im0, self.cap, s
return [path], [im0], self.cap, s
def _new_video(self, path):
"""Create a new video capture object."""
@ -290,16 +258,13 @@ class LoadImages:
class LoadPilAndNumpy:
def __init__(self, im0, imgsz=640, stride=32, auto=True, transforms=None):
def __init__(self, im0, imgsz=640):
"""Initialize PIL and Numpy Dataloader."""
if not isinstance(im0, list):
im0 = [im0]
self.paths = [getattr(im, 'filename', f'image{i}.jpg') for i, im in enumerate(im0)]
self.im0 = [self._single_check(im) for im in im0]
self.imgsz = imgsz
self.stride = stride
self.auto = auto
self.transforms = transforms
self.mode = 'image'
# Generate fake paths
self.bs = len(self.im0)
@ -315,16 +280,6 @@ class LoadPilAndNumpy:
im = np.ascontiguousarray(im) # contiguous
return im
def _single_preprocess(self, im, auto):
"""Preprocesses a single image for inference."""
if self.transforms:
im = self.transforms(im) # transforms
else:
im = LetterBox(self.imgsz, auto=auto, stride=self.stride)(image=im)
im = im.transpose((2, 0, 1))[::-1] # HWC to CHW, BGR to RGB
im = np.ascontiguousarray(im) # contiguous
return im
def __len__(self):
"""Returns the length of the 'im0' attribute."""
return len(self.im0)
@ -333,11 +288,8 @@ class LoadPilAndNumpy:
"""Returns batch paths, images, processed images, None, ''."""
if self.count == 1: # loop only once as it's batch inference
raise StopIteration
auto = all(x.shape == self.im0[0].shape for x in self.im0) and self.auto
im = [self._single_preprocess(im, auto) for im in self.im0]
im = np.stack(im, 0) if len(im) > 1 else im[0][None]
self.count += 1
return self.paths, im, self.im0, None, ''
return self.paths, self.im0, None, ''
def __iter__(self):
"""Enables iteration for class LoadPilAndNumpy."""
@ -362,7 +314,7 @@ class LoadTensor:
if self.count == 1:
raise StopIteration
self.count += 1
return None, self.im0, self.im0, None, '' # self.paths, im, self.im0, None, ''
return None, self.im0, None, '' # self.paths, im, self.im0, None, ''
def __len__(self):
"""Returns the batch size."""

View File

@ -21,21 +21,9 @@ class YOLODataset(BaseDataset):
Dataset class for loading object detection and/or segmentation labels in YOLO format.
Args:
img_path (str): Path to the folder containing images.
imgsz (int, optional): Image size. Defaults to 640.
cache (bool, optional): Cache images to RAM or disk during training. Defaults to False.
augment (bool, optional): If True, data augmentation is applied. Defaults to True.
hyp (dict, optional): Hyperparameters to apply data augmentation. Defaults to None.
prefix (str, optional): Prefix to print in log messages. Defaults to ''.
rect (bool, optional): If True, rectangular training is used. Defaults to False.
batch_size (int, optional): Size of batches. Defaults to None.
stride (int, optional): Stride. Defaults to 32.
pad (float, optional): Padding. Defaults to 0.0.
single_cls (bool, optional): If True, single class training is used. Defaults to False.
data (dict, optional): A dataset YAML dictionary. Defaults to None.
use_segments (bool, optional): If True, segmentation masks are used as labels. Defaults to False.
use_keypoints (bool, optional): If True, keypoints are used as labels. Defaults to False.
data (dict, optional): A dataset YAML dictionary. Defaults to None.
classes (list): List of included classes. Default is None.
Returns:
(torch.utils.data.Dataset): A PyTorch dataset object that can be used for training an object detection model.
@ -43,28 +31,12 @@ class YOLODataset(BaseDataset):
cache_version = '1.0.2' # dataset labels *.cache version, >= 1.0.0 for YOLOv8
rand_interp_methods = [cv2.INTER_NEAREST, cv2.INTER_LINEAR, cv2.INTER_CUBIC, cv2.INTER_AREA, cv2.INTER_LANCZOS4]
def __init__(self,
img_path,
imgsz=640,
cache=False,
augment=True,
hyp=None,
prefix='',
rect=False,
batch_size=None,
stride=32,
pad=0.0,
single_cls=False,
use_segments=False,
use_keypoints=False,
data=None,
classes=None):
def __init__(self, *args, data=None, use_segments=False, use_keypoints=False, **kwargs):
self.use_segments = use_segments
self.use_keypoints = use_keypoints
self.data = data
assert not (self.use_segments and self.use_keypoints), 'Can not use both segments and keypoints.'
super().__init__(img_path, imgsz, cache, augment, hyp, prefix, rect, batch_size, stride, pad, single_cls,
classes)
super().__init__(*args, **kwargs)
def cache_labels(self, path=Path('./labels.cache')):
"""Cache dataset labels, check images and read shapes.