ultralytics 8.0.89
SAM predict and auto-annotate (#2298)
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Yonghye Kwon <developer.0hye@gmail.com> Co-authored-by: Paula Derrenger <107626595+pderrenger@users.noreply.github.com> Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com> Co-authored-by: Laughing <61612323+Laughing-q@users.noreply.github.com> Co-authored-by: Ayush Chaurasia <ayush.chaurarsia@gmail.com> Co-authored-by: Snyk bot <snyk-bot@snyk.io> Co-authored-by: Laughing-q <1185102784@qq.com>
This commit is contained in:
240
ultralytics/vit/sam/modules/prompt_predictor.py
Normal file
240
ultralytics/vit/sam/modules/prompt_predictor.py
Normal file
@ -0,0 +1,240 @@
|
||||
from typing import Optional, Tuple
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
from ..autosize import ResizeLongestSide
|
||||
from .sam import Sam
|
||||
|
||||
|
||||
class PromptPredictor:
|
||||
|
||||
def __init__(self, sam_model: Sam) -> None:
|
||||
"""
|
||||
Uses SAM to calculate the image embedding for an image, and then
|
||||
allow repeated, efficient mask prediction given prompts.
|
||||
|
||||
Arguments:
|
||||
sam_model (Sam): The model to use for mask prediction.
|
||||
"""
|
||||
super().__init__()
|
||||
self.model = sam_model
|
||||
self.transform = ResizeLongestSide(sam_model.image_encoder.img_size)
|
||||
self.reset_image()
|
||||
|
||||
def set_image(self, image: np.ndarray, image_format: str = 'RGB') -> None:
|
||||
"""
|
||||
Calculates the image embeddings for the provided image, allowing
|
||||
masks to be predicted with the 'predict' method.
|
||||
|
||||
Arguments:
|
||||
image (np.ndarray): The image for calculating masks. Expects an
|
||||
image in HWC uint8 format, with pixel values in [0, 255].
|
||||
image_format (str): The color format of the image, in ['RGB', 'BGR'].
|
||||
"""
|
||||
assert image_format in {'RGB', 'BGR'}, f"image_format must be in ['RGB', 'BGR'], is {image_format}."
|
||||
if image_format != self.model.image_format:
|
||||
image = image[..., ::-1]
|
||||
|
||||
# Transform the image to the form expected by the model
|
||||
input_image = self.transform.apply_image(image)
|
||||
input_image_torch = torch.as_tensor(input_image, device=self.device)
|
||||
input_image_torch = input_image_torch.permute(2, 0, 1).contiguous()[None, :, :, :]
|
||||
|
||||
self.set_torch_image(input_image_torch, image.shape[:2])
|
||||
|
||||
@torch.no_grad()
|
||||
def set_torch_image(self, transformed_image: torch.Tensor, original_image_size: Tuple[int, ...]) -> None:
|
||||
"""
|
||||
Calculates the image embeddings for the provided image, allowing
|
||||
masks to be predicted with the 'predict' method. Expects the input
|
||||
image to be already transformed to the format expected by the model.
|
||||
|
||||
Arguments:
|
||||
transformed_image (torch.Tensor): The input image, with shape
|
||||
1x3xHxW, which has been transformed with ResizeLongestSide.
|
||||
original_image_size (tuple(int, int)): The size of the image
|
||||
before transformation, in (H, W) format.
|
||||
"""
|
||||
if len(transformed_image.shape) != 4 \
|
||||
or transformed_image.shape[1] != 3 \
|
||||
or max(*transformed_image.shape[2:]) != self.model.image_encoder.img_size:
|
||||
raise ValueError('set_torch_image input must be BCHW with long side {self.model.image_encoder.img_size}.')
|
||||
self.reset_image()
|
||||
|
||||
self.original_size = original_image_size
|
||||
self.input_size = tuple(transformed_image.shape[-2:])
|
||||
input_image = self.model.preprocess(transformed_image)
|
||||
self.features = self.model.image_encoder(input_image)
|
||||
self.is_image_set = True
|
||||
|
||||
def predict(
|
||||
self,
|
||||
point_coords: Optional[np.ndarray] = None,
|
||||
point_labels: Optional[np.ndarray] = None,
|
||||
box: Optional[np.ndarray] = None,
|
||||
mask_input: Optional[np.ndarray] = None,
|
||||
multimask_output: bool = True,
|
||||
return_logits: bool = False,
|
||||
) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
|
||||
"""
|
||||
Predict masks for the given input prompts, using the currently set image.
|
||||
|
||||
Arguments:
|
||||
point_coords (np.ndarray or None): A Nx2 array of point prompts to the
|
||||
model. Each point is in (X,Y) in pixels.
|
||||
point_labels (np.ndarray or None): A length N array of labels for the
|
||||
point prompts. 1 indicates a foreground point and 0 indicates a
|
||||
background point.
|
||||
box (np.ndarray or None): A length 4 array given a box prompt to the
|
||||
model, in XYXY format.
|
||||
mask_input (np.ndarray): A low resolution mask input to the model, typically
|
||||
coming from a previous prediction iteration. Has form 1xHxW, where
|
||||
for SAM, H=W=256.
|
||||
multimask_output (bool): If true, the model will return three masks.
|
||||
For ambiguous input prompts (such as a single click), this will often
|
||||
produce better masks than a single prediction. If only a single
|
||||
mask is needed, the model's predicted quality score can be used
|
||||
to select the best mask. For non-ambiguous prompts, such as multiple
|
||||
input prompts, multimask_output=False can give better results.
|
||||
return_logits (bool): If true, returns un-thresholded masks logits
|
||||
instead of a binary mask.
|
||||
|
||||
Returns:
|
||||
(np.ndarray): The output masks in CxHxW format, where C is the
|
||||
number of masks, and (H, W) is the original image size.
|
||||
(np.ndarray): An array of length C containing the model's
|
||||
predictions for the quality of each mask.
|
||||
(np.ndarray): An array of shape CxHxW, where C is the number
|
||||
of masks and H=W=256. These low resolution logits can be passed to
|
||||
a subsequent iteration as mask input.
|
||||
"""
|
||||
if not self.is_image_set:
|
||||
raise RuntimeError('An image must be set with .set_image(...) before mask prediction.')
|
||||
|
||||
# Transform input prompts
|
||||
coords_torch, labels_torch, box_torch, mask_input_torch = None, None, None, None
|
||||
if point_coords is not None:
|
||||
assert (point_labels is not None), 'point_labels must be supplied if point_coords is supplied.'
|
||||
point_coords = self.transform.apply_coords(point_coords, self.original_size)
|
||||
coords_torch = torch.as_tensor(point_coords, dtype=torch.float, device=self.device)
|
||||
labels_torch = torch.as_tensor(point_labels, dtype=torch.int, device=self.device)
|
||||
coords_torch, labels_torch = coords_torch[None, :, :], labels_torch[None, :]
|
||||
if box is not None:
|
||||
box = self.transform.apply_boxes(box, self.original_size)
|
||||
box_torch = torch.as_tensor(box, dtype=torch.float, device=self.device)
|
||||
box_torch = box_torch[None, :]
|
||||
if mask_input is not None:
|
||||
mask_input_torch = torch.as_tensor(mask_input, dtype=torch.float, device=self.device)
|
||||
mask_input_torch = mask_input_torch[None, :, :, :]
|
||||
|
||||
masks, iou_predictions, low_res_masks = self.predict_torch(
|
||||
coords_torch,
|
||||
labels_torch,
|
||||
box_torch,
|
||||
mask_input_torch,
|
||||
multimask_output,
|
||||
return_logits=return_logits,
|
||||
)
|
||||
|
||||
masks_np = masks[0].detach().cpu().numpy()
|
||||
iou_predictions_np = iou_predictions[0].detach().cpu().numpy()
|
||||
low_res_masks_np = low_res_masks[0].detach().cpu().numpy()
|
||||
return masks_np, iou_predictions_np, low_res_masks_np
|
||||
|
||||
@torch.no_grad()
|
||||
def predict_torch(
|
||||
self,
|
||||
point_coords: Optional[torch.Tensor],
|
||||
point_labels: Optional[torch.Tensor],
|
||||
boxes: Optional[torch.Tensor] = None,
|
||||
mask_input: Optional[torch.Tensor] = None,
|
||||
multimask_output: bool = True,
|
||||
return_logits: bool = False,
|
||||
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
||||
"""
|
||||
Predict masks for the given input prompts, using the currently set image.
|
||||
Input prompts are batched torch tensors and are expected to already be
|
||||
transformed to the input frame using ResizeLongestSide.
|
||||
|
||||
Arguments:
|
||||
point_coords (torch.Tensor or None): A BxNx2 array of point prompts to the
|
||||
model. Each point is in (X,Y) in pixels.
|
||||
point_labels (torch.Tensor or None): A BxN array of labels for the
|
||||
point prompts. 1 indicates a foreground point and 0 indicates a
|
||||
background point.
|
||||
boxes (np.ndarray or None): A Bx4 array given a box prompt to the
|
||||
model, in XYXY format.
|
||||
mask_input (np.ndarray): A low resolution mask input to the model, typically
|
||||
coming from a previous prediction iteration. Has form Bx1xHxW, where
|
||||
for SAM, H=W=256. Masks returned by a previous iteration of the
|
||||
predict method do not need further transformation.
|
||||
multimask_output (bool): If true, the model will return three masks.
|
||||
For ambiguous input prompts (such as a single click), this will often
|
||||
produce better masks than a single prediction. If only a single
|
||||
mask is needed, the model's predicted quality score can be used
|
||||
to select the best mask. For non-ambiguous prompts, such as multiple
|
||||
input prompts, multimask_output=False can give better results.
|
||||
return_logits (bool): If true, returns un-thresholded masks logits
|
||||
instead of a binary mask.
|
||||
|
||||
Returns:
|
||||
(torch.Tensor): The output masks in BxCxHxW format, where C is the
|
||||
number of masks, and (H, W) is the original image size.
|
||||
(torch.Tensor): An array of shape BxC containing the model's
|
||||
predictions for the quality of each mask.
|
||||
(torch.Tensor): An array of shape BxCxHxW, where C is the number
|
||||
of masks and H=W=256. These low res logits can be passed to
|
||||
a subsequent iteration as mask input.
|
||||
"""
|
||||
if not self.is_image_set:
|
||||
raise RuntimeError('An image must be set with .set_image(...) before mask prediction.')
|
||||
|
||||
points = (point_coords, point_labels) if point_coords is not None else None
|
||||
# Embed prompts
|
||||
sparse_embeddings, dense_embeddings = self.model.prompt_encoder(
|
||||
points=points,
|
||||
boxes=boxes,
|
||||
masks=mask_input,
|
||||
)
|
||||
|
||||
# Predict masks
|
||||
low_res_masks, iou_predictions = self.model.mask_decoder(
|
||||
image_embeddings=self.features,
|
||||
image_pe=self.model.prompt_encoder.get_dense_pe(),
|
||||
sparse_prompt_embeddings=sparse_embeddings,
|
||||
dense_prompt_embeddings=dense_embeddings,
|
||||
multimask_output=multimask_output,
|
||||
)
|
||||
|
||||
# Upscale the masks to the original image resolution
|
||||
masks = self.model.postprocess_masks(low_res_masks, self.input_size, self.original_size)
|
||||
|
||||
if not return_logits:
|
||||
masks = masks > self.model.mask_threshold
|
||||
|
||||
return masks, iou_predictions, low_res_masks
|
||||
|
||||
def get_image_embedding(self) -> torch.Tensor:
|
||||
"""
|
||||
Returns the image embeddings for the currently set image, with
|
||||
shape 1xCxHxW, where C is the embedding dimension and (H,W) are
|
||||
the embedding spatial dimension of SAM (typically C=256, H=W=64).
|
||||
"""
|
||||
if not self.is_image_set:
|
||||
raise RuntimeError('An image must be set with .set_image(...) to generate an embedding.')
|
||||
assert self.features is not None, 'Features must exist if an image has been set.'
|
||||
return self.features
|
||||
|
||||
@property
|
||||
def device(self) -> torch.device:
|
||||
return self.model.device
|
||||
|
||||
def reset_image(self) -> None:
|
||||
"""Resets the currently set image."""
|
||||
self.is_image_set = False
|
||||
self.features = None
|
||||
self.orig_h = None
|
||||
self.orig_w = None
|
||||
self.input_h = None
|
||||
self.input_w = None
|
Reference in New Issue
Block a user