ultralytics 8.0.89
SAM predict and auto-annotate (#2298)
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Yonghye Kwon <developer.0hye@gmail.com> Co-authored-by: Paula Derrenger <107626595+pderrenger@users.noreply.github.com> Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com> Co-authored-by: Laughing <61612323+Laughing-q@users.noreply.github.com> Co-authored-by: Ayush Chaurasia <ayush.chaurarsia@gmail.com> Co-authored-by: Snyk bot <snyk-bot@snyk.io> Co-authored-by: Laughing-q <1185102784@qq.com>
This commit is contained in:
@ -1,9 +1,10 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
|
||||
__version__ = '8.0.88'
|
||||
__version__ = '8.0.89'
|
||||
|
||||
from ultralytics.hub import start
|
||||
from ultralytics.vit.sam import SAM
|
||||
from ultralytics.yolo.engine.model import YOLO
|
||||
from ultralytics.yolo.utils.checks import check_yolo as checks
|
||||
|
||||
__all__ = '__version__', 'YOLO', 'checks', 'start' # allow simpler import
|
||||
__all__ = '__version__', 'YOLO', 'SAM', 'checks', 'start' # allow simpler import
|
||||
|
@ -495,6 +495,41 @@ class Detect(nn.Module):
|
||||
b[-1].bias.data[:m.nc] = math.log(5 / m.nc / (640 / s) ** 2) # cls (.01 objects, 80 classes, 640 img)
|
||||
|
||||
|
||||
class MLPBlock(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
embedding_dim,
|
||||
mlp_dim,
|
||||
act=nn.GELU,
|
||||
):
|
||||
super().__init__()
|
||||
self.lin1 = nn.Linear(embedding_dim, mlp_dim)
|
||||
self.lin2 = nn.Linear(mlp_dim, embedding_dim)
|
||||
self.act = act()
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
return self.lin2(self.act(self.lin1(x)))
|
||||
|
||||
|
||||
# From https://github.com/facebookresearch/detectron2/blob/main/detectron2/layers/batch_norm.py # noqa
|
||||
# Itself from https://github.com/facebookresearch/ConvNeXt/blob/d1fa8f6fef0a165b27399986cc2bdacc92777e40/models/convnext.py#L119 # noqa
|
||||
class LayerNorm2d(nn.Module):
|
||||
|
||||
def __init__(self, num_channels, eps=1e-6):
|
||||
super().__init__()
|
||||
self.weight = nn.Parameter(torch.ones(num_channels))
|
||||
self.bias = nn.Parameter(torch.zeros(num_channels))
|
||||
self.eps = eps
|
||||
|
||||
def forward(self, x):
|
||||
u = x.mean(1, keepdim=True)
|
||||
s = (x - u).pow(2).mean(1, keepdim=True)
|
||||
x = (x - u) / torch.sqrt(s + self.eps)
|
||||
x = self.weight[:, None, None] * x + self.bias[:, None, None]
|
||||
return x
|
||||
|
||||
|
||||
class Segment(Detect):
|
||||
"""YOLOv8 Segment head for segmentation models."""
|
||||
|
||||
|
1
ultralytics/vit/__init__.py
Normal file
1
ultralytics/vit/__init__.py
Normal file
@ -0,0 +1 @@
|
||||
from .sam import SAM # noqa
|
3
ultralytics/vit/sam/__init__.py
Normal file
3
ultralytics/vit/sam/__init__.py
Normal file
@ -0,0 +1,3 @@
|
||||
from .build import build_sam # noqa
|
||||
from .model import SAM # noqa
|
||||
from .modules.prompt_predictor import PromptPredictor # noqa
|
311
ultralytics/vit/sam/amg.py
Normal file
311
ultralytics/vit/sam/amg.py
Normal file
@ -0,0 +1,311 @@
|
||||
import math
|
||||
from copy import deepcopy
|
||||
from itertools import product
|
||||
from typing import Any, Dict, Generator, ItemsView, List, Tuple
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
|
||||
class MaskData:
|
||||
"""
|
||||
A structure for storing masks and their related data in batched format.
|
||||
Implements basic filtering and concatenation.
|
||||
"""
|
||||
|
||||
def __init__(self, **kwargs) -> None:
|
||||
"""Initialize a MaskData object, ensuring all values are supported types."""
|
||||
for v in kwargs.values():
|
||||
assert isinstance(
|
||||
v, (list, np.ndarray, torch.Tensor)), 'MaskData only supports list, numpy arrays, and torch tensors.'
|
||||
self._stats = dict(**kwargs)
|
||||
|
||||
def __setitem__(self, key: str, item: Any) -> None:
|
||||
"""Set an item in the MaskData object, ensuring it is a supported type."""
|
||||
assert isinstance(
|
||||
item, (list, np.ndarray, torch.Tensor)), 'MaskData only supports list, numpy arrays, and torch tensors.'
|
||||
self._stats[key] = item
|
||||
|
||||
def __delitem__(self, key: str) -> None:
|
||||
"""Delete an item from the MaskData object."""
|
||||
del self._stats[key]
|
||||
|
||||
def __getitem__(self, key: str) -> Any:
|
||||
"""Get an item from the MaskData object."""
|
||||
return self._stats[key]
|
||||
|
||||
def items(self) -> ItemsView[str, Any]:
|
||||
"""Return an ItemsView of the MaskData object."""
|
||||
return self._stats.items()
|
||||
|
||||
def filter(self, keep: torch.Tensor) -> None:
|
||||
"""Filter the MaskData object based on the given boolean tensor."""
|
||||
for k, v in self._stats.items():
|
||||
if v is None:
|
||||
self._stats[k] = None
|
||||
elif isinstance(v, torch.Tensor):
|
||||
self._stats[k] = v[torch.as_tensor(keep, device=v.device)]
|
||||
elif isinstance(v, np.ndarray):
|
||||
self._stats[k] = v[keep.detach().cpu().numpy()]
|
||||
elif isinstance(v, list) and keep.dtype == torch.bool:
|
||||
self._stats[k] = [a for i, a in enumerate(v) if keep[i]]
|
||||
elif isinstance(v, list):
|
||||
self._stats[k] = [v[i] for i in keep]
|
||||
else:
|
||||
raise TypeError(f'MaskData key {k} has an unsupported type {type(v)}.')
|
||||
|
||||
def cat(self, new_stats: 'MaskData') -> None:
|
||||
"""Concatenate a new MaskData object to the current one."""
|
||||
for k, v in new_stats.items():
|
||||
if k not in self._stats or self._stats[k] is None:
|
||||
self._stats[k] = deepcopy(v)
|
||||
elif isinstance(v, torch.Tensor):
|
||||
self._stats[k] = torch.cat([self._stats[k], v], dim=0)
|
||||
elif isinstance(v, np.ndarray):
|
||||
self._stats[k] = np.concatenate([self._stats[k], v], axis=0)
|
||||
elif isinstance(v, list):
|
||||
self._stats[k] = self._stats[k] + deepcopy(v)
|
||||
else:
|
||||
raise TypeError(f'MaskData key {k} has an unsupported type {type(v)}.')
|
||||
|
||||
def to_numpy(self) -> None:
|
||||
"""Convert all torch tensors in the MaskData object to numpy arrays."""
|
||||
for k, v in self._stats.items():
|
||||
if isinstance(v, torch.Tensor):
|
||||
self._stats[k] = v.detach().cpu().numpy()
|
||||
|
||||
|
||||
def is_box_near_crop_edge(boxes: torch.Tensor,
|
||||
crop_box: List[int],
|
||||
orig_box: List[int],
|
||||
atol: float = 20.0) -> torch.Tensor:
|
||||
"""Return a boolean tensor indicating if boxes are near the crop edge."""
|
||||
crop_box_torch = torch.as_tensor(crop_box, dtype=torch.float, device=boxes.device)
|
||||
orig_box_torch = torch.as_tensor(orig_box, dtype=torch.float, device=boxes.device)
|
||||
boxes = uncrop_boxes_xyxy(boxes, crop_box).float()
|
||||
near_crop_edge = torch.isclose(boxes, crop_box_torch[None, :], atol=atol, rtol=0)
|
||||
near_image_edge = torch.isclose(boxes, orig_box_torch[None, :], atol=atol, rtol=0)
|
||||
near_crop_edge = torch.logical_and(near_crop_edge, ~near_image_edge)
|
||||
return torch.any(near_crop_edge, dim=1)
|
||||
|
||||
|
||||
def box_xyxy_to_xywh(box_xyxy: torch.Tensor) -> torch.Tensor:
|
||||
"""Convert bounding boxes from XYXY format to XYWH format."""
|
||||
box_xywh = deepcopy(box_xyxy)
|
||||
box_xywh[2] = box_xywh[2] - box_xywh[0]
|
||||
box_xywh[3] = box_xywh[3] - box_xywh[1]
|
||||
return box_xywh
|
||||
|
||||
|
||||
def batch_iterator(batch_size: int, *args) -> Generator[List[Any], None, None]:
|
||||
"""Yield batches of data from the input arguments."""
|
||||
assert args and all(len(a) == len(args[0]) for a in args), 'Batched iteration must have same-size inputs.'
|
||||
n_batches = len(args[0]) // batch_size + int(len(args[0]) % batch_size != 0)
|
||||
for b in range(n_batches):
|
||||
yield [arg[b * batch_size:(b + 1) * batch_size] for arg in args]
|
||||
|
||||
|
||||
def mask_to_rle_pytorch(tensor: torch.Tensor) -> List[Dict[str, Any]]:
|
||||
"""Encode masks as uncompressed RLEs in the format expected by pycocotools."""
|
||||
# Put in fortran order and flatten h,w
|
||||
b, h, w = tensor.shape
|
||||
tensor = tensor.permute(0, 2, 1).flatten(1)
|
||||
|
||||
# Compute change indices
|
||||
diff = tensor[:, 1:] ^ tensor[:, :-1]
|
||||
change_indices = diff.nonzero()
|
||||
|
||||
# Encode run length
|
||||
out = []
|
||||
for i in range(b):
|
||||
cur_idxs = change_indices[change_indices[:, 0] == i, 1]
|
||||
cur_idxs = torch.cat([
|
||||
torch.tensor([0], dtype=cur_idxs.dtype, device=cur_idxs.device),
|
||||
cur_idxs + 1,
|
||||
torch.tensor([h * w], dtype=cur_idxs.dtype, device=cur_idxs.device), ])
|
||||
btw_idxs = cur_idxs[1:] - cur_idxs[:-1]
|
||||
counts = [] if tensor[i, 0] == 0 else [0]
|
||||
counts.extend(btw_idxs.detach().cpu().tolist())
|
||||
out.append({'size': [h, w], 'counts': counts})
|
||||
return out
|
||||
|
||||
|
||||
def rle_to_mask(rle: Dict[str, Any]) -> np.ndarray:
|
||||
"""Compute a binary mask from an uncompressed RLE."""
|
||||
h, w = rle['size']
|
||||
mask = np.empty(h * w, dtype=bool)
|
||||
idx = 0
|
||||
parity = False
|
||||
for count in rle['counts']:
|
||||
mask[idx:idx + count] = parity
|
||||
idx += count
|
||||
parity ^= True
|
||||
mask = mask.reshape(w, h)
|
||||
return mask.transpose() # Put in C order
|
||||
|
||||
|
||||
def area_from_rle(rle: Dict[str, Any]) -> int:
|
||||
"""Calculate the area of a mask from its uncompressed RLE."""
|
||||
return sum(rle['counts'][1::2])
|
||||
|
||||
|
||||
def calculate_stability_score(masks: torch.Tensor, mask_threshold: float, threshold_offset: float) -> torch.Tensor:
|
||||
"""
|
||||
Computes the stability score for a batch of masks. The stability
|
||||
score is the IoU between the binary masks obtained by thresholding
|
||||
the predicted mask logits at high and low values.
|
||||
"""
|
||||
# One mask is always contained inside the other.
|
||||
# Save memory by preventing unnecessary cast to torch.int64
|
||||
intersections = ((masks > (mask_threshold + threshold_offset)).sum(-1, dtype=torch.int16).sum(-1,
|
||||
dtype=torch.int32))
|
||||
unions = ((masks > (mask_threshold - threshold_offset)).sum(-1, dtype=torch.int16).sum(-1, dtype=torch.int32))
|
||||
return intersections / unions
|
||||
|
||||
|
||||
def build_point_grid(n_per_side: int) -> np.ndarray:
|
||||
"""Generate a 2D grid of evenly spaced points in the range [0,1]x[0,1]."""
|
||||
offset = 1 / (2 * n_per_side)
|
||||
points_one_side = np.linspace(offset, 1 - offset, n_per_side)
|
||||
points_x = np.tile(points_one_side[None, :], (n_per_side, 1))
|
||||
points_y = np.tile(points_one_side[:, None], (1, n_per_side))
|
||||
return np.stack([points_x, points_y], axis=-1).reshape(-1, 2)
|
||||
|
||||
|
||||
def build_all_layer_point_grids(n_per_side: int, n_layers: int, scale_per_layer: int) -> List[np.ndarray]:
|
||||
"""Generate point grids for all crop layers."""
|
||||
return [build_point_grid(int(n_per_side / (scale_per_layer ** i))) for i in range(n_layers + 1)]
|
||||
|
||||
|
||||
def generate_crop_boxes(im_size: Tuple[int, ...], n_layers: int,
|
||||
overlap_ratio: float) -> Tuple[List[List[int]], List[int]]:
|
||||
"""Generates a list of crop boxes of different sizes. Each layer has (2**i)**2 boxes for the ith layer."""
|
||||
crop_boxes, layer_idxs = [], []
|
||||
im_h, im_w = im_size
|
||||
short_side = min(im_h, im_w)
|
||||
|
||||
# Original image
|
||||
crop_boxes.append([0, 0, im_w, im_h])
|
||||
layer_idxs.append(0)
|
||||
|
||||
def crop_len(orig_len, n_crops, overlap):
|
||||
"""Crops bounding boxes to the size of the input image."""
|
||||
return int(math.ceil((overlap * (n_crops - 1) + orig_len) / n_crops))
|
||||
|
||||
for i_layer in range(n_layers):
|
||||
n_crops_per_side = 2 ** (i_layer + 1)
|
||||
overlap = int(overlap_ratio * short_side * (2 / n_crops_per_side))
|
||||
|
||||
crop_w = crop_len(im_w, n_crops_per_side, overlap)
|
||||
crop_h = crop_len(im_h, n_crops_per_side, overlap)
|
||||
|
||||
crop_box_x0 = [int((crop_w - overlap) * i) for i in range(n_crops_per_side)]
|
||||
crop_box_y0 = [int((crop_h - overlap) * i) for i in range(n_crops_per_side)]
|
||||
|
||||
# Crops in XYWH format
|
||||
for x0, y0 in product(crop_box_x0, crop_box_y0):
|
||||
box = [x0, y0, min(x0 + crop_w, im_w), min(y0 + crop_h, im_h)]
|
||||
crop_boxes.append(box)
|
||||
layer_idxs.append(i_layer + 1)
|
||||
|
||||
return crop_boxes, layer_idxs
|
||||
|
||||
|
||||
def uncrop_boxes_xyxy(boxes: torch.Tensor, crop_box: List[int]) -> torch.Tensor:
|
||||
"""Uncrop bounding boxes by adding the crop box offset."""
|
||||
x0, y0, _, _ = crop_box
|
||||
offset = torch.tensor([[x0, y0, x0, y0]], device=boxes.device)
|
||||
# Check if boxes has a channel dimension
|
||||
if len(boxes.shape) == 3:
|
||||
offset = offset.unsqueeze(1)
|
||||
return boxes + offset
|
||||
|
||||
|
||||
def uncrop_points(points: torch.Tensor, crop_box: List[int]) -> torch.Tensor:
|
||||
"""Uncrop points by adding the crop box offset."""
|
||||
x0, y0, _, _ = crop_box
|
||||
offset = torch.tensor([[x0, y0]], device=points.device)
|
||||
# Check if points has a channel dimension
|
||||
if len(points.shape) == 3:
|
||||
offset = offset.unsqueeze(1)
|
||||
return points + offset
|
||||
|
||||
|
||||
def uncrop_masks(masks: torch.Tensor, crop_box: List[int], orig_h: int, orig_w: int) -> torch.Tensor:
|
||||
"""Uncrop masks by padding them to the original image size."""
|
||||
x0, y0, x1, y1 = crop_box
|
||||
if x0 == 0 and y0 == 0 and x1 == orig_w and y1 == orig_h:
|
||||
return masks
|
||||
# Coordinate transform masks
|
||||
pad_x, pad_y = orig_w - (x1 - x0), orig_h - (y1 - y0)
|
||||
pad = (x0, pad_x - x0, y0, pad_y - y0)
|
||||
return torch.nn.functional.pad(masks, pad, value=0)
|
||||
|
||||
|
||||
def remove_small_regions(mask: np.ndarray, area_thresh: float, mode: str) -> Tuple[np.ndarray, bool]:
|
||||
"""Remove small disconnected regions or holes in a mask, returning the mask and a modification indicator."""
|
||||
import cv2 # type: ignore
|
||||
|
||||
assert mode in {'holes', 'islands'}
|
||||
correct_holes = mode == 'holes'
|
||||
working_mask = (correct_holes ^ mask).astype(np.uint8)
|
||||
n_labels, regions, stats, _ = cv2.connectedComponentsWithStats(working_mask, 8)
|
||||
sizes = stats[:, -1][1:] # Row 0 is background label
|
||||
small_regions = [i + 1 for i, s in enumerate(sizes) if s < area_thresh]
|
||||
if not small_regions:
|
||||
return mask, False
|
||||
fill_labels = [0] + small_regions
|
||||
if not correct_holes:
|
||||
fill_labels = [i for i in range(n_labels) if i not in fill_labels]
|
||||
# If every region is below threshold, keep largest
|
||||
if not fill_labels:
|
||||
fill_labels = [int(np.argmax(sizes)) + 1]
|
||||
mask = np.isin(regions, fill_labels)
|
||||
return mask, True
|
||||
|
||||
|
||||
def coco_encode_rle(uncompressed_rle: Dict[str, Any]) -> Dict[str, Any]:
|
||||
"""Encode uncompressed RLE (run-length encoding) to COCO RLE format."""
|
||||
from pycocotools import mask as mask_utils # type: ignore
|
||||
|
||||
h, w = uncompressed_rle['size']
|
||||
rle = mask_utils.frPyObjects(uncompressed_rle, h, w)
|
||||
rle['counts'] = rle['counts'].decode('utf-8') # Necessary to serialize with json
|
||||
return rle
|
||||
|
||||
|
||||
def batched_mask_to_box(masks: torch.Tensor) -> torch.Tensor:
|
||||
"""
|
||||
Calculates boxes in XYXY format around masks. Return [0,0,0,0] for
|
||||
an empty mask. For input shape C1xC2x...xHxW, the output shape is C1xC2x...x4.
|
||||
"""
|
||||
# torch.max below raises an error on empty inputs, just skip in this case
|
||||
if torch.numel(masks) == 0:
|
||||
return torch.zeros(*masks.shape[:-2], 4, device=masks.device)
|
||||
|
||||
# Normalize shape to CxHxW
|
||||
shape = masks.shape
|
||||
h, w = shape[-2:]
|
||||
masks = masks.flatten(0, -3) if len(shape) > 2 else masks.unsqueeze(0)
|
||||
# Get top and bottom edges
|
||||
in_height, _ = torch.max(masks, dim=-1)
|
||||
in_height_coords = in_height * torch.arange(h, device=in_height.device)[None, :]
|
||||
bottom_edges, _ = torch.max(in_height_coords, dim=-1)
|
||||
in_height_coords = in_height_coords + h * (~in_height)
|
||||
top_edges, _ = torch.min(in_height_coords, dim=-1)
|
||||
|
||||
# Get left and right edges
|
||||
in_width, _ = torch.max(masks, dim=-2)
|
||||
in_width_coords = in_width * torch.arange(w, device=in_width.device)[None, :]
|
||||
right_edges, _ = torch.max(in_width_coords, dim=-1)
|
||||
in_width_coords = in_width_coords + w * (~in_width)
|
||||
left_edges, _ = torch.min(in_width_coords, dim=-1)
|
||||
|
||||
# If the mask is empty the right edge will be to the left of the left edge.
|
||||
# Replace these boxes with [0, 0, 0, 0]
|
||||
empty_filter = (right_edges < left_edges) | (bottom_edges < top_edges)
|
||||
out = torch.stack([left_edges, top_edges, right_edges, bottom_edges], dim=-1)
|
||||
out = out * (~empty_filter).unsqueeze(-1)
|
||||
|
||||
# Return to original shape
|
||||
return out.reshape(*shape[:-2], 4) if len(shape) > 2 else out[0]
|
92
ultralytics/vit/sam/autosize.py
Normal file
92
ultralytics/vit/sam/autosize.py
Normal file
@ -0,0 +1,92 @@
|
||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
|
||||
# This source code is licensed under the license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
from copy import deepcopy
|
||||
from typing import Tuple
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from torch.nn import functional as F
|
||||
from torchvision.transforms.functional import resize, to_pil_image # type: ignore
|
||||
|
||||
|
||||
class ResizeLongestSide:
|
||||
"""
|
||||
Resizes images to the longest side 'target_length', as well as provides
|
||||
methods for resizing coordinates and boxes. Provides methods for
|
||||
transforming both numpy array and batched torch tensors.
|
||||
"""
|
||||
|
||||
def __init__(self, target_length: int) -> None:
|
||||
self.target_length = target_length
|
||||
|
||||
def apply_image(self, image: np.ndarray) -> np.ndarray:
|
||||
"""
|
||||
Expects a numpy array with shape HxWxC in uint8 format.
|
||||
"""
|
||||
target_size = self.get_preprocess_shape(image.shape[0], image.shape[1], self.target_length)
|
||||
return np.array(resize(to_pil_image(image), target_size))
|
||||
|
||||
def apply_coords(self, coords: np.ndarray, original_size: Tuple[int, ...]) -> np.ndarray:
|
||||
"""
|
||||
Expects a numpy array of length 2 in the final dimension. Requires the
|
||||
original image size in (H, W) format.
|
||||
"""
|
||||
old_h, old_w = original_size
|
||||
new_h, new_w = self.get_preprocess_shape(original_size[0], original_size[1], self.target_length)
|
||||
coords = deepcopy(coords).astype(float)
|
||||
coords[..., 0] = coords[..., 0] * (new_w / old_w)
|
||||
coords[..., 1] = coords[..., 1] * (new_h / old_h)
|
||||
return coords
|
||||
|
||||
def apply_boxes(self, boxes: np.ndarray, original_size: Tuple[int, ...]) -> np.ndarray:
|
||||
"""
|
||||
Expects a numpy array shape Bx4. Requires the original image size
|
||||
in (H, W) format.
|
||||
"""
|
||||
boxes = self.apply_coords(boxes.reshape(-1, 2, 2), original_size)
|
||||
return boxes.reshape(-1, 4)
|
||||
|
||||
def apply_image_torch(self, image: torch.Tensor) -> torch.Tensor:
|
||||
"""
|
||||
Expects batched images with shape BxCxHxW and float format. This
|
||||
transformation may not exactly match apply_image. apply_image is
|
||||
the transformation expected by the model.
|
||||
"""
|
||||
# Expects an image in BCHW format. May not exactly match apply_image.
|
||||
target_size = self.get_preprocess_shape(image.shape[2], image.shape[3], self.target_length)
|
||||
return F.interpolate(image, target_size, mode='bilinear', align_corners=False, antialias=True)
|
||||
|
||||
def apply_coords_torch(self, coords: torch.Tensor, original_size: Tuple[int, ...]) -> torch.Tensor:
|
||||
"""
|
||||
Expects a torch tensor with length 2 in the last dimension. Requires the
|
||||
original image size in (H, W) format.
|
||||
"""
|
||||
old_h, old_w = original_size
|
||||
new_h, new_w = self.get_preprocess_shape(original_size[0], original_size[1], self.target_length)
|
||||
coords = deepcopy(coords).to(torch.float)
|
||||
coords[..., 0] = coords[..., 0] * (new_w / old_w)
|
||||
coords[..., 1] = coords[..., 1] * (new_h / old_h)
|
||||
return coords
|
||||
|
||||
def apply_boxes_torch(self, boxes: torch.Tensor, original_size: Tuple[int, ...]) -> torch.Tensor:
|
||||
"""
|
||||
Expects a torch tensor with shape Bx4. Requires the original image
|
||||
size in (H, W) format.
|
||||
"""
|
||||
boxes = self.apply_coords_torch(boxes.reshape(-1, 2, 2), original_size)
|
||||
return boxes.reshape(-1, 4)
|
||||
|
||||
@staticmethod
|
||||
def get_preprocess_shape(oldh: int, oldw: int, long_side_length: int) -> Tuple[int, int]:
|
||||
"""
|
||||
Compute the output size given input size and target long side length.
|
||||
"""
|
||||
scale = long_side_length * 1.0 / max(oldh, oldw)
|
||||
newh, neww = oldh * scale, oldw * scale
|
||||
neww = int(neww + 0.5)
|
||||
newh = int(newh + 0.5)
|
||||
return (newh, neww)
|
121
ultralytics/vit/sam/build.py
Normal file
121
ultralytics/vit/sam/build.py
Normal file
@ -0,0 +1,121 @@
|
||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
|
||||
# This source code is licensed under the license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
from functools import partial
|
||||
|
||||
import torch
|
||||
|
||||
from ...yolo.utils.downloads import attempt_download_asset
|
||||
from .modules.decoders import MaskDecoder
|
||||
from .modules.encoders import ImageEncoderViT, PromptEncoder
|
||||
from .modules.sam import Sam
|
||||
from .modules.transformer import TwoWayTransformer
|
||||
|
||||
|
||||
def build_sam_vit_h(checkpoint=None):
|
||||
"""Build and return a Segment Anything Model (SAM) h-size model."""
|
||||
return _build_sam(
|
||||
encoder_embed_dim=1280,
|
||||
encoder_depth=32,
|
||||
encoder_num_heads=16,
|
||||
encoder_global_attn_indexes=[7, 15, 23, 31],
|
||||
checkpoint=checkpoint,
|
||||
)
|
||||
|
||||
|
||||
def build_sam_vit_l(checkpoint=None):
|
||||
"""Build and return a Segment Anything Model (SAM) l-size model."""
|
||||
return _build_sam(
|
||||
encoder_embed_dim=1024,
|
||||
encoder_depth=24,
|
||||
encoder_num_heads=16,
|
||||
encoder_global_attn_indexes=[5, 11, 17, 23],
|
||||
checkpoint=checkpoint,
|
||||
)
|
||||
|
||||
|
||||
def build_sam_vit_b(checkpoint=None):
|
||||
"""Build and return a Segment Anything Model (SAM) b-size model."""
|
||||
return _build_sam(
|
||||
encoder_embed_dim=768,
|
||||
encoder_depth=12,
|
||||
encoder_num_heads=12,
|
||||
encoder_global_attn_indexes=[2, 5, 8, 11],
|
||||
checkpoint=checkpoint,
|
||||
)
|
||||
|
||||
|
||||
def _build_sam(
|
||||
encoder_embed_dim,
|
||||
encoder_depth,
|
||||
encoder_num_heads,
|
||||
encoder_global_attn_indexes,
|
||||
checkpoint=None,
|
||||
):
|
||||
"""Builds the selected SAM model architecture."""
|
||||
prompt_embed_dim = 256
|
||||
image_size = 1024
|
||||
vit_patch_size = 16
|
||||
image_embedding_size = image_size // vit_patch_size
|
||||
sam = Sam(
|
||||
image_encoder=ImageEncoderViT(
|
||||
depth=encoder_depth,
|
||||
embed_dim=encoder_embed_dim,
|
||||
img_size=image_size,
|
||||
mlp_ratio=4,
|
||||
norm_layer=partial(torch.nn.LayerNorm, eps=1e-6),
|
||||
num_heads=encoder_num_heads,
|
||||
patch_size=vit_patch_size,
|
||||
qkv_bias=True,
|
||||
use_rel_pos=True,
|
||||
global_attn_indexes=encoder_global_attn_indexes,
|
||||
window_size=14,
|
||||
out_chans=prompt_embed_dim,
|
||||
),
|
||||
prompt_encoder=PromptEncoder(
|
||||
embed_dim=prompt_embed_dim,
|
||||
image_embedding_size=(image_embedding_size, image_embedding_size),
|
||||
input_image_size=(image_size, image_size),
|
||||
mask_in_chans=16,
|
||||
),
|
||||
mask_decoder=MaskDecoder(
|
||||
num_multimask_outputs=3,
|
||||
transformer=TwoWayTransformer(
|
||||
depth=2,
|
||||
embedding_dim=prompt_embed_dim,
|
||||
mlp_dim=2048,
|
||||
num_heads=8,
|
||||
),
|
||||
transformer_dim=prompt_embed_dim,
|
||||
iou_head_depth=3,
|
||||
iou_head_hidden_dim=256,
|
||||
),
|
||||
pixel_mean=[123.675, 116.28, 103.53],
|
||||
pixel_std=[58.395, 57.12, 57.375],
|
||||
)
|
||||
sam.eval()
|
||||
if checkpoint is not None:
|
||||
attempt_download_asset(checkpoint)
|
||||
with open(checkpoint, 'rb') as f:
|
||||
state_dict = torch.load(f)
|
||||
sam.load_state_dict(state_dict)
|
||||
return sam
|
||||
|
||||
|
||||
sam_model_map = {
|
||||
# "default": build_sam_vit_h,
|
||||
'sam_h.pt': build_sam_vit_h,
|
||||
'sam_l.pt': build_sam_vit_l,
|
||||
'sam_b.pt': build_sam_vit_b, }
|
||||
|
||||
|
||||
def build_sam(ckpt='sam_b.pt'):
|
||||
"""Build a SAM model specified by ckpt."""
|
||||
model_builder = sam_model_map.get(ckpt)
|
||||
if not model_builder:
|
||||
raise FileNotFoundError(f'{ckpt} is not a supported sam model. Available models are: \n {sam_model_map.keys()}')
|
||||
|
||||
return model_builder(ckpt)
|
35
ultralytics/vit/sam/model.py
Normal file
35
ultralytics/vit/sam/model.py
Normal file
@ -0,0 +1,35 @@
|
||||
# SAM model interface
|
||||
|
||||
from ultralytics.yolo.cfg import get_cfg
|
||||
|
||||
from .build import build_sam
|
||||
from .predict import Predictor
|
||||
|
||||
|
||||
class SAM:
|
||||
|
||||
def __init__(self, model='sam_b.pt') -> None:
|
||||
if model and not (model.endswith('.pt') or model.endswith('.pth')):
|
||||
# Should raise AssertionError instead?
|
||||
raise NotImplementedError('Segment anything prediction requires pre-trained checkpoint')
|
||||
self.model = build_sam(model)
|
||||
self.predictor = None # reuse predictor
|
||||
|
||||
def predict(self, source, stream=False, **kwargs):
|
||||
"""Predicts and returns segmentation masks for given image or video source."""
|
||||
overrides = dict(conf=0.25, task='segment', mode='predict')
|
||||
overrides.update(kwargs) # prefer kwargs
|
||||
if not self.predictor:
|
||||
self.predictor = Predictor(overrides=overrides)
|
||||
self.predictor.setup_model(model=self.model)
|
||||
else: # only update args if predictor is already setup
|
||||
self.predictor.args = get_cfg(self.predictor.args, overrides)
|
||||
return self.predictor(source, stream=stream)
|
||||
|
||||
def train(self, **kwargs):
|
||||
"""Function trains models but raises an error as SAM models do not support training."""
|
||||
raise NotImplementedError("SAM models don't support training")
|
||||
|
||||
def val(self, **kwargs):
|
||||
"""Run validation given dataset."""
|
||||
raise NotImplementedError("SAM models don't support validation")
|
0
ultralytics/vit/sam/modules/__init__.py
Normal file
0
ultralytics/vit/sam/modules/__init__.py
Normal file
161
ultralytics/vit/sam/modules/decoders.py
Normal file
161
ultralytics/vit/sam/modules/decoders.py
Normal file
@ -0,0 +1,161 @@
|
||||
from typing import List, Tuple, Type
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
from torch.nn import functional as F
|
||||
|
||||
from ultralytics.nn.modules import LayerNorm2d
|
||||
|
||||
|
||||
class MaskDecoder(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
transformer_dim: int,
|
||||
transformer: nn.Module,
|
||||
num_multimask_outputs: int = 3,
|
||||
activation: Type[nn.Module] = nn.GELU,
|
||||
iou_head_depth: int = 3,
|
||||
iou_head_hidden_dim: int = 256,
|
||||
) -> None:
|
||||
"""
|
||||
Predicts masks given an image and prompt embeddings, using a
|
||||
transformer architecture.
|
||||
|
||||
Arguments:
|
||||
transformer_dim (int): the channel dimension of the transformer
|
||||
transformer (nn.Module): the transformer used to predict masks
|
||||
num_multimask_outputs (int): the number of masks to predict
|
||||
when disambiguating masks
|
||||
activation (nn.Module): the type of activation to use when
|
||||
upscaling masks
|
||||
iou_head_depth (int): the depth of the MLP used to predict
|
||||
mask quality
|
||||
iou_head_hidden_dim (int): the hidden dimension of the MLP
|
||||
used to predict mask quality
|
||||
"""
|
||||
super().__init__()
|
||||
self.transformer_dim = transformer_dim
|
||||
self.transformer = transformer
|
||||
|
||||
self.num_multimask_outputs = num_multimask_outputs
|
||||
|
||||
self.iou_token = nn.Embedding(1, transformer_dim)
|
||||
self.num_mask_tokens = num_multimask_outputs + 1
|
||||
self.mask_tokens = nn.Embedding(self.num_mask_tokens, transformer_dim)
|
||||
|
||||
self.output_upscaling = nn.Sequential(
|
||||
nn.ConvTranspose2d(transformer_dim, transformer_dim // 4, kernel_size=2, stride=2),
|
||||
LayerNorm2d(transformer_dim // 4),
|
||||
activation(),
|
||||
nn.ConvTranspose2d(transformer_dim // 4, transformer_dim // 8, kernel_size=2, stride=2),
|
||||
activation(),
|
||||
)
|
||||
self.output_hypernetworks_mlps = nn.ModuleList([
|
||||
MLP(transformer_dim, transformer_dim, transformer_dim // 8, 3) for _ in range(self.num_mask_tokens)])
|
||||
|
||||
self.iou_prediction_head = MLP(transformer_dim, iou_head_hidden_dim, self.num_mask_tokens, iou_head_depth)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
image_embeddings: torch.Tensor,
|
||||
image_pe: torch.Tensor,
|
||||
sparse_prompt_embeddings: torch.Tensor,
|
||||
dense_prompt_embeddings: torch.Tensor,
|
||||
multimask_output: bool,
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
"""
|
||||
Predict masks given image and prompt embeddings.
|
||||
|
||||
Arguments:
|
||||
image_embeddings (torch.Tensor): the embeddings from the image encoder
|
||||
image_pe (torch.Tensor): positional encoding with the shape of image_embeddings
|
||||
sparse_prompt_embeddings (torch.Tensor): the embeddings of the points and boxes
|
||||
dense_prompt_embeddings (torch.Tensor): the embeddings of the mask inputs
|
||||
multimask_output (bool): Whether to return multiple masks or a single
|
||||
mask.
|
||||
|
||||
Returns:
|
||||
torch.Tensor: batched predicted masks
|
||||
torch.Tensor: batched predictions of mask quality
|
||||
"""
|
||||
masks, iou_pred = self.predict_masks(
|
||||
image_embeddings=image_embeddings,
|
||||
image_pe=image_pe,
|
||||
sparse_prompt_embeddings=sparse_prompt_embeddings,
|
||||
dense_prompt_embeddings=dense_prompt_embeddings,
|
||||
)
|
||||
|
||||
# Select the correct mask or masks for output
|
||||
mask_slice = slice(1, None) if multimask_output else slice(0, 1)
|
||||
masks = masks[:, mask_slice, :, :]
|
||||
iou_pred = iou_pred[:, mask_slice]
|
||||
|
||||
# Prepare output
|
||||
return masks, iou_pred
|
||||
|
||||
def predict_masks(
|
||||
self,
|
||||
image_embeddings: torch.Tensor,
|
||||
image_pe: torch.Tensor,
|
||||
sparse_prompt_embeddings: torch.Tensor,
|
||||
dense_prompt_embeddings: torch.Tensor,
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
"""Predicts masks. See 'forward' for more details."""
|
||||
# Concatenate output tokens
|
||||
output_tokens = torch.cat([self.iou_token.weight, self.mask_tokens.weight], dim=0)
|
||||
output_tokens = output_tokens.unsqueeze(0).expand(sparse_prompt_embeddings.size(0), -1, -1)
|
||||
tokens = torch.cat((output_tokens, sparse_prompt_embeddings), dim=1)
|
||||
|
||||
# Expand per-image data in batch direction to be per-mask
|
||||
src = torch.repeat_interleave(image_embeddings, tokens.shape[0], dim=0)
|
||||
src = src + dense_prompt_embeddings
|
||||
pos_src = torch.repeat_interleave(image_pe, tokens.shape[0], dim=0)
|
||||
b, c, h, w = src.shape
|
||||
|
||||
# Run the transformer
|
||||
hs, src = self.transformer(src, pos_src, tokens)
|
||||
iou_token_out = hs[:, 0, :]
|
||||
mask_tokens_out = hs[:, 1:(1 + self.num_mask_tokens), :]
|
||||
|
||||
# Upscale mask embeddings and predict masks using the mask tokens
|
||||
src = src.transpose(1, 2).view(b, c, h, w)
|
||||
upscaled_embedding = self.output_upscaling(src)
|
||||
hyper_in_list: List[torch.Tensor] = [
|
||||
self.output_hypernetworks_mlps[i](mask_tokens_out[:, i, :]) for i in range(self.num_mask_tokens)]
|
||||
hyper_in = torch.stack(hyper_in_list, dim=1)
|
||||
b, c, h, w = upscaled_embedding.shape
|
||||
masks = (hyper_in @ upscaled_embedding.view(b, c, h * w)).view(b, -1, h, w)
|
||||
|
||||
# Generate mask quality predictions
|
||||
iou_pred = self.iou_prediction_head(iou_token_out)
|
||||
|
||||
return masks, iou_pred
|
||||
|
||||
|
||||
# Lightly adapted from
|
||||
# https://github.com/facebookresearch/MaskFormer/blob/main/mask_former/modeling/transformer/transformer_predictor.py # noqa
|
||||
class MLP(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
input_dim: int,
|
||||
hidden_dim: int,
|
||||
output_dim: int,
|
||||
num_layers: int,
|
||||
sigmoid_output: bool = False,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
self.num_layers = num_layers
|
||||
h = [hidden_dim] * (num_layers - 1)
|
||||
self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim]))
|
||||
self.sigmoid_output = sigmoid_output
|
||||
|
||||
def forward(self, x):
|
||||
"""Executes feedforward within the neural network module and applies activation."""
|
||||
for i, layer in enumerate(self.layers):
|
||||
x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
|
||||
if self.sigmoid_output:
|
||||
x = F.sigmoid(x)
|
||||
return x
|
582
ultralytics/vit/sam/modules/encoders.py
Normal file
582
ultralytics/vit/sam/modules/encoders.py
Normal file
@ -0,0 +1,582 @@
|
||||
from typing import Any, Optional, Tuple, Type
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
from ultralytics.nn.modules import LayerNorm2d, MLPBlock
|
||||
|
||||
|
||||
# This class and its supporting functions below lightly adapted from the ViTDet backbone available at: https://github.com/facebookresearch/detectron2/blob/main/detectron2/modeling/backbone/vit.py # noqa
|
||||
class ImageEncoderViT(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
img_size: int = 1024,
|
||||
patch_size: int = 16,
|
||||
in_chans: int = 3,
|
||||
embed_dim: int = 768,
|
||||
depth: int = 12,
|
||||
num_heads: int = 12,
|
||||
mlp_ratio: float = 4.0,
|
||||
out_chans: int = 256,
|
||||
qkv_bias: bool = True,
|
||||
norm_layer: Type[nn.Module] = nn.LayerNorm,
|
||||
act_layer: Type[nn.Module] = nn.GELU,
|
||||
use_abs_pos: bool = True,
|
||||
use_rel_pos: bool = False,
|
||||
rel_pos_zero_init: bool = True,
|
||||
window_size: int = 0,
|
||||
global_attn_indexes: Tuple[int, ...] = (),
|
||||
) -> None:
|
||||
"""
|
||||
Args:
|
||||
img_size (int): Input image size.
|
||||
patch_size (int): Patch size.
|
||||
in_chans (int): Number of input image channels.
|
||||
embed_dim (int): Patch embedding dimension.
|
||||
depth (int): Depth of ViT.
|
||||
num_heads (int): Number of attention heads in each ViT block.
|
||||
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
||||
qkv_bias (bool): If True, add a learnable bias to query, key, value.
|
||||
norm_layer (nn.Module): Normalization layer.
|
||||
act_layer (nn.Module): Activation layer.
|
||||
use_abs_pos (bool): If True, use absolute positional embeddings.
|
||||
use_rel_pos (bool): If True, add relative positional embeddings to the attention map.
|
||||
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
|
||||
window_size (int): Window size for window attention blocks.
|
||||
global_attn_indexes (list): Indexes for blocks using global attention.
|
||||
"""
|
||||
super().__init__()
|
||||
self.img_size = img_size
|
||||
|
||||
self.patch_embed = PatchEmbed(
|
||||
kernel_size=(patch_size, patch_size),
|
||||
stride=(patch_size, patch_size),
|
||||
in_chans=in_chans,
|
||||
embed_dim=embed_dim,
|
||||
)
|
||||
|
||||
self.pos_embed: Optional[nn.Parameter] = None
|
||||
if use_abs_pos:
|
||||
# Initialize absolute positional embedding with pretrain image size.
|
||||
self.pos_embed = nn.Parameter(torch.zeros(1, img_size // patch_size, img_size // patch_size, embed_dim))
|
||||
|
||||
self.blocks = nn.ModuleList()
|
||||
for i in range(depth):
|
||||
block = Block(
|
||||
dim=embed_dim,
|
||||
num_heads=num_heads,
|
||||
mlp_ratio=mlp_ratio,
|
||||
qkv_bias=qkv_bias,
|
||||
norm_layer=norm_layer,
|
||||
act_layer=act_layer,
|
||||
use_rel_pos=use_rel_pos,
|
||||
rel_pos_zero_init=rel_pos_zero_init,
|
||||
window_size=window_size if i not in global_attn_indexes else 0,
|
||||
input_size=(img_size // patch_size, img_size // patch_size),
|
||||
)
|
||||
self.blocks.append(block)
|
||||
|
||||
self.neck = nn.Sequential(
|
||||
nn.Conv2d(
|
||||
embed_dim,
|
||||
out_chans,
|
||||
kernel_size=1,
|
||||
bias=False,
|
||||
),
|
||||
LayerNorm2d(out_chans),
|
||||
nn.Conv2d(
|
||||
out_chans,
|
||||
out_chans,
|
||||
kernel_size=3,
|
||||
padding=1,
|
||||
bias=False,
|
||||
),
|
||||
LayerNorm2d(out_chans),
|
||||
)
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
x = self.patch_embed(x)
|
||||
if self.pos_embed is not None:
|
||||
x = x + self.pos_embed
|
||||
|
||||
for blk in self.blocks:
|
||||
x = blk(x)
|
||||
|
||||
x = self.neck(x.permute(0, 3, 1, 2))
|
||||
|
||||
return x
|
||||
|
||||
|
||||
class PromptEncoder(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
embed_dim: int,
|
||||
image_embedding_size: Tuple[int, int],
|
||||
input_image_size: Tuple[int, int],
|
||||
mask_in_chans: int,
|
||||
activation: Type[nn.Module] = nn.GELU,
|
||||
) -> None:
|
||||
"""
|
||||
Encodes prompts for input to SAM's mask decoder.
|
||||
|
||||
Arguments:
|
||||
embed_dim (int): The prompts' embedding dimension
|
||||
image_embedding_size (tuple(int, int)): The spatial size of the
|
||||
image embedding, as (H, W).
|
||||
input_image_size (int): The padded size of the image as input
|
||||
to the image encoder, as (H, W).
|
||||
mask_in_chans (int): The number of hidden channels used for
|
||||
encoding input masks.
|
||||
activation (nn.Module): The activation to use when encoding
|
||||
input masks.
|
||||
"""
|
||||
super().__init__()
|
||||
self.embed_dim = embed_dim
|
||||
self.input_image_size = input_image_size
|
||||
self.image_embedding_size = image_embedding_size
|
||||
self.pe_layer = PositionEmbeddingRandom(embed_dim // 2)
|
||||
|
||||
self.num_point_embeddings: int = 4 # pos/neg point + 2 box corners
|
||||
point_embeddings = [nn.Embedding(1, embed_dim) for _ in range(self.num_point_embeddings)]
|
||||
self.point_embeddings = nn.ModuleList(point_embeddings)
|
||||
self.not_a_point_embed = nn.Embedding(1, embed_dim)
|
||||
|
||||
self.mask_input_size = (4 * image_embedding_size[0], 4 * image_embedding_size[1])
|
||||
self.mask_downscaling = nn.Sequential(
|
||||
nn.Conv2d(1, mask_in_chans // 4, kernel_size=2, stride=2),
|
||||
LayerNorm2d(mask_in_chans // 4),
|
||||
activation(),
|
||||
nn.Conv2d(mask_in_chans // 4, mask_in_chans, kernel_size=2, stride=2),
|
||||
LayerNorm2d(mask_in_chans),
|
||||
activation(),
|
||||
nn.Conv2d(mask_in_chans, embed_dim, kernel_size=1),
|
||||
)
|
||||
self.no_mask_embed = nn.Embedding(1, embed_dim)
|
||||
|
||||
def get_dense_pe(self) -> torch.Tensor:
|
||||
"""
|
||||
Returns the positional encoding used to encode point prompts,
|
||||
applied to a dense set of points the shape of the image encoding.
|
||||
|
||||
Returns:
|
||||
torch.Tensor: Positional encoding with shape
|
||||
1x(embed_dim)x(embedding_h)x(embedding_w)
|
||||
"""
|
||||
return self.pe_layer(self.image_embedding_size).unsqueeze(0)
|
||||
|
||||
def _embed_points(
|
||||
self,
|
||||
points: torch.Tensor,
|
||||
labels: torch.Tensor,
|
||||
pad: bool,
|
||||
) -> torch.Tensor:
|
||||
"""Embeds point prompts."""
|
||||
points = points + 0.5 # Shift to center of pixel
|
||||
if pad:
|
||||
padding_point = torch.zeros((points.shape[0], 1, 2), device=points.device)
|
||||
padding_label = -torch.ones((labels.shape[0], 1), device=labels.device)
|
||||
points = torch.cat([points, padding_point], dim=1)
|
||||
labels = torch.cat([labels, padding_label], dim=1)
|
||||
point_embedding = self.pe_layer.forward_with_coords(points, self.input_image_size)
|
||||
point_embedding[labels == -1] = 0.0
|
||||
point_embedding[labels == -1] += self.not_a_point_embed.weight
|
||||
point_embedding[labels == 0] += self.point_embeddings[0].weight
|
||||
point_embedding[labels == 1] += self.point_embeddings[1].weight
|
||||
return point_embedding
|
||||
|
||||
def _embed_boxes(self, boxes: torch.Tensor) -> torch.Tensor:
|
||||
"""Embeds box prompts."""
|
||||
boxes = boxes + 0.5 # Shift to center of pixel
|
||||
coords = boxes.reshape(-1, 2, 2)
|
||||
corner_embedding = self.pe_layer.forward_with_coords(coords, self.input_image_size)
|
||||
corner_embedding[:, 0, :] += self.point_embeddings[2].weight
|
||||
corner_embedding[:, 1, :] += self.point_embeddings[3].weight
|
||||
return corner_embedding
|
||||
|
||||
def _embed_masks(self, masks: torch.Tensor) -> torch.Tensor:
|
||||
"""Embeds mask inputs."""
|
||||
return self.mask_downscaling(masks)
|
||||
|
||||
def _get_batch_size(
|
||||
self,
|
||||
points: Optional[Tuple[torch.Tensor, torch.Tensor]],
|
||||
boxes: Optional[torch.Tensor],
|
||||
masks: Optional[torch.Tensor],
|
||||
) -> int:
|
||||
"""
|
||||
Gets the batch size of the output given the batch size of the input prompts.
|
||||
"""
|
||||
if points is not None:
|
||||
return points[0].shape[0]
|
||||
elif boxes is not None:
|
||||
return boxes.shape[0]
|
||||
elif masks is not None:
|
||||
return masks.shape[0]
|
||||
else:
|
||||
return 1
|
||||
|
||||
def _get_device(self) -> torch.device:
|
||||
return self.point_embeddings[0].weight.device
|
||||
|
||||
def forward(
|
||||
self,
|
||||
points: Optional[Tuple[torch.Tensor, torch.Tensor]],
|
||||
boxes: Optional[torch.Tensor],
|
||||
masks: Optional[torch.Tensor],
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
"""
|
||||
Embeds different types of prompts, returning both sparse and dense
|
||||
embeddings.
|
||||
|
||||
Arguments:
|
||||
points (tuple(torch.Tensor, torch.Tensor) or none): point coordinates
|
||||
and labels to embed.
|
||||
boxes (torch.Tensor or none): boxes to embed
|
||||
masks (torch.Tensor or none): masks to embed
|
||||
|
||||
Returns:
|
||||
torch.Tensor: sparse embeddings for the points and boxes, with shape
|
||||
BxNx(embed_dim), where N is determined by the number of input points
|
||||
and boxes.
|
||||
torch.Tensor: dense embeddings for the masks, in the shape
|
||||
Bx(embed_dim)x(embed_H)x(embed_W)
|
||||
"""
|
||||
bs = self._get_batch_size(points, boxes, masks)
|
||||
sparse_embeddings = torch.empty((bs, 0, self.embed_dim), device=self._get_device())
|
||||
if points is not None:
|
||||
coords, labels = points
|
||||
point_embeddings = self._embed_points(coords, labels, pad=(boxes is None))
|
||||
sparse_embeddings = torch.cat([sparse_embeddings, point_embeddings], dim=1)
|
||||
if boxes is not None:
|
||||
box_embeddings = self._embed_boxes(boxes)
|
||||
sparse_embeddings = torch.cat([sparse_embeddings, box_embeddings], dim=1)
|
||||
|
||||
if masks is not None:
|
||||
dense_embeddings = self._embed_masks(masks)
|
||||
else:
|
||||
dense_embeddings = self.no_mask_embed.weight.reshape(1, -1, 1,
|
||||
1).expand(bs, -1, self.image_embedding_size[0],
|
||||
self.image_embedding_size[1])
|
||||
|
||||
return sparse_embeddings, dense_embeddings
|
||||
|
||||
|
||||
class PositionEmbeddingRandom(nn.Module):
|
||||
"""
|
||||
Positional encoding using random spatial frequencies.
|
||||
"""
|
||||
|
||||
def __init__(self, num_pos_feats: int = 64, scale: Optional[float] = None) -> None:
|
||||
super().__init__()
|
||||
if scale is None or scale <= 0.0:
|
||||
scale = 1.0
|
||||
self.register_buffer(
|
||||
'positional_encoding_gaussian_matrix',
|
||||
scale * torch.randn((2, num_pos_feats)),
|
||||
)
|
||||
|
||||
def _pe_encoding(self, coords: torch.Tensor) -> torch.Tensor:
|
||||
"""Positionally encode points that are normalized to [0,1]."""
|
||||
# assuming coords are in [0, 1]^2 square and have d_1 x ... x d_n x 2 shape
|
||||
coords = 2 * coords - 1
|
||||
coords = coords @ self.positional_encoding_gaussian_matrix
|
||||
coords = 2 * np.pi * coords
|
||||
# outputs d_1 x ... x d_n x C shape
|
||||
return torch.cat([torch.sin(coords), torch.cos(coords)], dim=-1)
|
||||
|
||||
def forward(self, size: Tuple[int, int]) -> torch.Tensor:
|
||||
"""Generate positional encoding for a grid of the specified size."""
|
||||
h, w = size
|
||||
device: Any = self.positional_encoding_gaussian_matrix.device
|
||||
grid = torch.ones((h, w), device=device, dtype=torch.float32)
|
||||
y_embed = grid.cumsum(dim=0) - 0.5
|
||||
x_embed = grid.cumsum(dim=1) - 0.5
|
||||
y_embed = y_embed / h
|
||||
x_embed = x_embed / w
|
||||
|
||||
pe = self._pe_encoding(torch.stack([x_embed, y_embed], dim=-1))
|
||||
return pe.permute(2, 0, 1) # C x H x W
|
||||
|
||||
def forward_with_coords(self, coords_input: torch.Tensor, image_size: Tuple[int, int]) -> torch.Tensor:
|
||||
"""Positionally encode points that are not normalized to [0,1]."""
|
||||
coords = coords_input.clone()
|
||||
coords[:, :, 0] = coords[:, :, 0] / image_size[1]
|
||||
coords[:, :, 1] = coords[:, :, 1] / image_size[0]
|
||||
return self._pe_encoding(coords.to(torch.float)) # B x N x C
|
||||
|
||||
|
||||
class Block(nn.Module):
|
||||
"""Transformer blocks with support of window attention and residual propagation blocks"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
dim: int,
|
||||
num_heads: int,
|
||||
mlp_ratio: float = 4.0,
|
||||
qkv_bias: bool = True,
|
||||
norm_layer: Type[nn.Module] = nn.LayerNorm,
|
||||
act_layer: Type[nn.Module] = nn.GELU,
|
||||
use_rel_pos: bool = False,
|
||||
rel_pos_zero_init: bool = True,
|
||||
window_size: int = 0,
|
||||
input_size: Optional[Tuple[int, int]] = None,
|
||||
) -> None:
|
||||
"""
|
||||
Args:
|
||||
dim (int): Number of input channels.
|
||||
num_heads (int): Number of attention heads in each ViT block.
|
||||
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
||||
qkv_bias (bool): If True, add a learnable bias to query, key, value.
|
||||
norm_layer (nn.Module): Normalization layer.
|
||||
act_layer (nn.Module): Activation layer.
|
||||
use_rel_pos (bool): If True, add relative positional embeddings to the attention map.
|
||||
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
|
||||
window_size (int): Window size for window attention blocks. If it equals 0, then
|
||||
use global attention.
|
||||
input_size (tuple(int, int) or None): Input resolution for calculating the relative
|
||||
positional parameter size.
|
||||
"""
|
||||
super().__init__()
|
||||
self.norm1 = norm_layer(dim)
|
||||
self.attn = Attention(
|
||||
dim,
|
||||
num_heads=num_heads,
|
||||
qkv_bias=qkv_bias,
|
||||
use_rel_pos=use_rel_pos,
|
||||
rel_pos_zero_init=rel_pos_zero_init,
|
||||
input_size=input_size if window_size == 0 else (window_size, window_size),
|
||||
)
|
||||
|
||||
self.norm2 = norm_layer(dim)
|
||||
self.mlp = MLPBlock(embedding_dim=dim, mlp_dim=int(dim * mlp_ratio), act=act_layer)
|
||||
|
||||
self.window_size = window_size
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
shortcut = x
|
||||
x = self.norm1(x)
|
||||
# Window partition
|
||||
if self.window_size > 0:
|
||||
H, W = x.shape[1], x.shape[2]
|
||||
x, pad_hw = window_partition(x, self.window_size)
|
||||
|
||||
x = self.attn(x)
|
||||
# Reverse window partition
|
||||
if self.window_size > 0:
|
||||
x = window_unpartition(x, self.window_size, pad_hw, (H, W))
|
||||
|
||||
x = shortcut + x
|
||||
x = x + self.mlp(self.norm2(x))
|
||||
|
||||
return x
|
||||
|
||||
|
||||
class Attention(nn.Module):
|
||||
"""Multi-head Attention block with relative position embeddings."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
dim: int,
|
||||
num_heads: int = 8,
|
||||
qkv_bias: bool = True,
|
||||
use_rel_pos: bool = False,
|
||||
rel_pos_zero_init: bool = True,
|
||||
input_size: Optional[Tuple[int, int]] = None,
|
||||
) -> None:
|
||||
"""
|
||||
Args:
|
||||
dim (int): Number of input channels.
|
||||
num_heads (int): Number of attention heads.
|
||||
qkv_bias (bool): If True, add a learnable bias to query, key, value.
|
||||
rel_pos (bool): If True, add relative positional embeddings to the attention map.
|
||||
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
|
||||
input_size (tuple(int, int) or None): Input resolution for calculating the relative
|
||||
positional parameter size.
|
||||
"""
|
||||
super().__init__()
|
||||
self.num_heads = num_heads
|
||||
head_dim = dim // num_heads
|
||||
self.scale = head_dim ** -0.5
|
||||
|
||||
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
||||
self.proj = nn.Linear(dim, dim)
|
||||
|
||||
self.use_rel_pos = use_rel_pos
|
||||
if self.use_rel_pos:
|
||||
assert (input_size is not None), 'Input size must be provided if using relative positional encoding.'
|
||||
# initialize relative positional embeddings
|
||||
self.rel_pos_h = nn.Parameter(torch.zeros(2 * input_size[0] - 1, head_dim))
|
||||
self.rel_pos_w = nn.Parameter(torch.zeros(2 * input_size[1] - 1, head_dim))
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
B, H, W, _ = x.shape
|
||||
# qkv with shape (3, B, nHead, H * W, C)
|
||||
qkv = self.qkv(x).reshape(B, H * W, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
|
||||
# q, k, v with shape (B * nHead, H * W, C)
|
||||
q, k, v = qkv.reshape(3, B * self.num_heads, H * W, -1).unbind(0)
|
||||
|
||||
attn = (q * self.scale) @ k.transpose(-2, -1)
|
||||
|
||||
if self.use_rel_pos:
|
||||
attn = add_decomposed_rel_pos(attn, q, self.rel_pos_h, self.rel_pos_w, (H, W), (H, W))
|
||||
|
||||
attn = attn.softmax(dim=-1)
|
||||
x = (attn @ v).view(B, self.num_heads, H, W, -1).permute(0, 2, 3, 1, 4).reshape(B, H, W, -1)
|
||||
x = self.proj(x)
|
||||
|
||||
return x
|
||||
|
||||
|
||||
def window_partition(x: torch.Tensor, window_size: int) -> Tuple[torch.Tensor, Tuple[int, int]]:
|
||||
"""
|
||||
Partition into non-overlapping windows with padding if needed.
|
||||
Args:
|
||||
x (tensor): input tokens with [B, H, W, C].
|
||||
window_size (int): window size.
|
||||
|
||||
Returns:
|
||||
windows: windows after partition with [B * num_windows, window_size, window_size, C].
|
||||
(Hp, Wp): padded height and width before partition
|
||||
"""
|
||||
B, H, W, C = x.shape
|
||||
|
||||
pad_h = (window_size - H % window_size) % window_size
|
||||
pad_w = (window_size - W % window_size) % window_size
|
||||
if pad_h > 0 or pad_w > 0:
|
||||
x = F.pad(x, (0, 0, 0, pad_w, 0, pad_h))
|
||||
Hp, Wp = H + pad_h, W + pad_w
|
||||
|
||||
x = x.view(B, Hp // window_size, window_size, Wp // window_size, window_size, C)
|
||||
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
|
||||
return windows, (Hp, Wp)
|
||||
|
||||
|
||||
def window_unpartition(windows: torch.Tensor, window_size: int, pad_hw: Tuple[int, int],
|
||||
hw: Tuple[int, int]) -> torch.Tensor:
|
||||
"""
|
||||
Window unpartition into original sequences and removing padding.
|
||||
Args:
|
||||
windows (tensor): input tokens with [B * num_windows, window_size, window_size, C].
|
||||
window_size (int): window size.
|
||||
pad_hw (Tuple): padded height and width (Hp, Wp).
|
||||
hw (Tuple): original height and width (H, W) before padding.
|
||||
|
||||
Returns:
|
||||
x: unpartitioned sequences with [B, H, W, C].
|
||||
"""
|
||||
Hp, Wp = pad_hw
|
||||
H, W = hw
|
||||
B = windows.shape[0] // (Hp * Wp // window_size // window_size)
|
||||
x = windows.view(B, Hp // window_size, Wp // window_size, window_size, window_size, -1)
|
||||
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, Hp, Wp, -1)
|
||||
|
||||
if Hp > H or Wp > W:
|
||||
x = x[:, :H, :W, :].contiguous()
|
||||
return x
|
||||
|
||||
|
||||
def get_rel_pos(q_size: int, k_size: int, rel_pos: torch.Tensor) -> torch.Tensor:
|
||||
"""
|
||||
Get relative positional embeddings according to the relative positions of
|
||||
query and key sizes.
|
||||
Args:
|
||||
q_size (int): size of query q.
|
||||
k_size (int): size of key k.
|
||||
rel_pos (Tensor): relative position embeddings (L, C).
|
||||
|
||||
Returns:
|
||||
Extracted positional embeddings according to relative positions.
|
||||
"""
|
||||
max_rel_dist = int(2 * max(q_size, k_size) - 1)
|
||||
# Interpolate rel pos if needed.
|
||||
if rel_pos.shape[0] != max_rel_dist:
|
||||
# Interpolate rel pos.
|
||||
rel_pos_resized = F.interpolate(
|
||||
rel_pos.reshape(1, rel_pos.shape[0], -1).permute(0, 2, 1),
|
||||
size=max_rel_dist,
|
||||
mode='linear',
|
||||
)
|
||||
rel_pos_resized = rel_pos_resized.reshape(-1, max_rel_dist).permute(1, 0)
|
||||
else:
|
||||
rel_pos_resized = rel_pos
|
||||
|
||||
# Scale the coords with short length if shapes for q and k are different.
|
||||
q_coords = torch.arange(q_size)[:, None] * max(k_size / q_size, 1.0)
|
||||
k_coords = torch.arange(k_size)[None, :] * max(q_size / k_size, 1.0)
|
||||
relative_coords = (q_coords - k_coords) + (k_size - 1) * max(q_size / k_size, 1.0)
|
||||
|
||||
return rel_pos_resized[relative_coords.long()]
|
||||
|
||||
|
||||
def add_decomposed_rel_pos(
|
||||
attn: torch.Tensor,
|
||||
q: torch.Tensor,
|
||||
rel_pos_h: torch.Tensor,
|
||||
rel_pos_w: torch.Tensor,
|
||||
q_size: Tuple[int, int],
|
||||
k_size: Tuple[int, int],
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Calculate decomposed Relative Positional Embeddings from :paper:`mvitv2`.
|
||||
https://github.com/facebookresearch/mvit/blob/19786631e330df9f3622e5402b4a419a263a2c80/mvit/models/attention.py # noqa B950
|
||||
Args:
|
||||
attn (Tensor): attention map.
|
||||
q (Tensor): query q in the attention layer with shape (B, q_h * q_w, C).
|
||||
rel_pos_h (Tensor): relative position embeddings (Lh, C) for height axis.
|
||||
rel_pos_w (Tensor): relative position embeddings (Lw, C) for width axis.
|
||||
q_size (Tuple): spatial sequence size of query q with (q_h, q_w).
|
||||
k_size (Tuple): spatial sequence size of key k with (k_h, k_w).
|
||||
|
||||
Returns:
|
||||
attn (Tensor): attention map with added relative positional embeddings.
|
||||
"""
|
||||
q_h, q_w = q_size
|
||||
k_h, k_w = k_size
|
||||
Rh = get_rel_pos(q_h, k_h, rel_pos_h)
|
||||
Rw = get_rel_pos(q_w, k_w, rel_pos_w)
|
||||
|
||||
B, _, dim = q.shape
|
||||
r_q = q.reshape(B, q_h, q_w, dim)
|
||||
rel_h = torch.einsum('bhwc,hkc->bhwk', r_q, Rh)
|
||||
rel_w = torch.einsum('bhwc,wkc->bhwk', r_q, Rw)
|
||||
|
||||
attn = (attn.view(B, q_h, q_w, k_h, k_w) + rel_h[:, :, :, :, None] + rel_w[:, :, :, None, :]).view(
|
||||
B, q_h * q_w, k_h * k_w)
|
||||
|
||||
return attn
|
||||
|
||||
|
||||
class PatchEmbed(nn.Module):
|
||||
"""
|
||||
Image to Patch Embedding.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
kernel_size: Tuple[int, int] = (16, 16),
|
||||
stride: Tuple[int, int] = (16, 16),
|
||||
padding: Tuple[int, int] = (0, 0),
|
||||
in_chans: int = 3,
|
||||
embed_dim: int = 768,
|
||||
) -> None:
|
||||
"""
|
||||
Args:
|
||||
kernel_size (Tuple): kernel size of the projection layer.
|
||||
stride (Tuple): stride of the projection layer.
|
||||
padding (Tuple): padding size of the projection layer.
|
||||
in_chans (int): Number of input image channels.
|
||||
embed_dim (int): Patch embedding dimension.
|
||||
"""
|
||||
super().__init__()
|
||||
|
||||
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding)
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
x = self.proj(x)
|
||||
# B C H W -> B H W C
|
||||
x = x.permute(0, 2, 3, 1)
|
||||
return x
|
352
ultralytics/vit/sam/modules/mask_generator.py
Normal file
352
ultralytics/vit/sam/modules/mask_generator.py
Normal file
@ -0,0 +1,352 @@
|
||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
|
||||
# This source code is licensed under the license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
from typing import Any, Dict, List, Optional, Tuple
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from torchvision.ops.boxes import batched_nms, box_area # type: ignore
|
||||
|
||||
from ..amg import (MaskData, area_from_rle, batch_iterator, batched_mask_to_box, box_xyxy_to_xywh,
|
||||
build_all_layer_point_grids, calculate_stability_score, coco_encode_rle, generate_crop_boxes,
|
||||
is_box_near_crop_edge, mask_to_rle_pytorch, remove_small_regions, rle_to_mask, uncrop_boxes_xyxy,
|
||||
uncrop_masks, uncrop_points)
|
||||
from .prompt_predictor import PromptPredictor
|
||||
from .sam import Sam
|
||||
|
||||
|
||||
class SamAutomaticMaskGenerator:
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
model: Sam,
|
||||
points_per_side: Optional[int] = 32,
|
||||
points_per_batch: int = 64,
|
||||
pred_iou_thresh: float = 0.88,
|
||||
stability_score_thresh: float = 0.95,
|
||||
stability_score_offset: float = 1.0,
|
||||
box_nms_thresh: float = 0.7,
|
||||
crop_n_layers: int = 0,
|
||||
crop_nms_thresh: float = 0.7,
|
||||
crop_overlap_ratio: float = 512 / 1500,
|
||||
crop_n_points_downscale_factor: int = 1,
|
||||
point_grids: Optional[List[np.ndarray]] = None,
|
||||
min_mask_region_area: int = 0,
|
||||
output_mode: str = 'binary_mask',
|
||||
) -> None:
|
||||
"""
|
||||
Using a SAM model, generates masks for the entire image.
|
||||
Generates a grid of point prompts over the image, then filters
|
||||
low quality and duplicate masks. The default settings are chosen
|
||||
for SAM with a ViT-H backbone.
|
||||
|
||||
Arguments:
|
||||
model (Sam): The SAM model to use for mask prediction.
|
||||
points_per_side (int or None): The number of points to be sampled
|
||||
along one side of the image. The total number of points is
|
||||
points_per_side**2. If None, 'point_grids' must provide explicit
|
||||
point sampling.
|
||||
points_per_batch (int): Sets the number of points run simultaneously
|
||||
by the model. Higher numbers may be faster but use more GPU memory.
|
||||
pred_iou_thresh (float): A filtering threshold in [0,1], using the
|
||||
model's predicted mask quality.
|
||||
stability_score_thresh (float): A filtering threshold in [0,1], using
|
||||
the stability of the mask under changes to the cutoff used to binarize
|
||||
the model's mask predictions.
|
||||
stability_score_offset (float): The amount to shift the cutoff when
|
||||
calculated the stability score.
|
||||
box_nms_thresh (float): The box IoU cutoff used by non-maximal
|
||||
suppression to filter duplicate masks.
|
||||
crop_n_layers (int): If >0, mask prediction will be run again on
|
||||
crops of the image. Sets the number of layers to run, where each
|
||||
layer has 2**i_layer number of image crops.
|
||||
crop_nms_thresh (float): The box IoU cutoff used by non-maximal
|
||||
suppression to filter duplicate masks between different crops.
|
||||
crop_overlap_ratio (float): Sets the degree to which crops overlap.
|
||||
In the first crop layer, crops will overlap by this fraction of
|
||||
the image length. Later layers with more crops scale down this overlap.
|
||||
crop_n_points_downscale_factor (int): The number of points-per-side
|
||||
sampled in layer n is scaled down by crop_n_points_downscale_factor**n.
|
||||
point_grids (list(np.ndarray) or None): A list over explicit grids
|
||||
of points used for sampling, normalized to [0,1]. The nth grid in the
|
||||
list is used in the nth crop layer. Exclusive with points_per_side.
|
||||
min_mask_region_area (int): If >0, postprocessing will be applied
|
||||
to remove disconnected regions and holes in masks with area smaller
|
||||
than min_mask_region_area. Requires opencv.
|
||||
output_mode (str): The form masks are returned in. Can be 'binary_mask',
|
||||
'uncompressed_rle', or 'coco_rle'. 'coco_rle' requires pycocotools.
|
||||
For large resolutions, 'binary_mask' may consume large amounts of
|
||||
memory.
|
||||
"""
|
||||
|
||||
assert (points_per_side is None) != (point_grids is
|
||||
None), 'Exactly one of points_per_side or point_grid must be provided.'
|
||||
if points_per_side is not None:
|
||||
self.point_grids = build_all_layer_point_grids(
|
||||
points_per_side,
|
||||
crop_n_layers,
|
||||
crop_n_points_downscale_factor,
|
||||
)
|
||||
elif point_grids is not None:
|
||||
self.point_grids = point_grids
|
||||
else:
|
||||
raise ValueError("Can't have both points_per_side and point_grid be None.")
|
||||
|
||||
assert output_mode in {'binary_mask', 'uncompressed_rle', 'coco_rle'}, f'Unknown output_mode {output_mode}.'
|
||||
if output_mode == 'coco_rle':
|
||||
from pycocotools import mask as mask_utils # type: ignore # noqa: F401
|
||||
|
||||
if min_mask_region_area > 0:
|
||||
import cv2 # type: ignore # noqa: F401
|
||||
|
||||
self.predictor = PromptPredictor(model)
|
||||
self.points_per_batch = points_per_batch
|
||||
self.pred_iou_thresh = pred_iou_thresh
|
||||
self.stability_score_thresh = stability_score_thresh
|
||||
self.stability_score_offset = stability_score_offset
|
||||
self.box_nms_thresh = box_nms_thresh
|
||||
self.crop_n_layers = crop_n_layers
|
||||
self.crop_nms_thresh = crop_nms_thresh
|
||||
self.crop_overlap_ratio = crop_overlap_ratio
|
||||
self.crop_n_points_downscale_factor = crop_n_points_downscale_factor
|
||||
self.min_mask_region_area = min_mask_region_area
|
||||
self.output_mode = output_mode
|
||||
|
||||
# TODO: Temporary implementation for compatibility
|
||||
def __call__(self, image: np.ndarray, augment=False, visualize=False) -> List[Dict[str, Any]]:
|
||||
return self.generate(image)
|
||||
|
||||
@torch.no_grad()
|
||||
def generate(self, image: np.ndarray) -> List[Dict[str, Any]]:
|
||||
"""
|
||||
Generates masks for the given image.
|
||||
|
||||
Arguments:
|
||||
image (np.ndarray): The image to generate masks for, in HWC uint8 format.
|
||||
|
||||
Returns:
|
||||
list(dict(str, any)): A list over records for masks. Each record is
|
||||
a dict containing the following keys:
|
||||
segmentation (dict(str, any) or np.ndarray): The mask. If
|
||||
output_mode='binary_mask', is an array of shape HW. Otherwise,
|
||||
is a dictionary containing the RLE.
|
||||
bbox (list(float)): The box around the mask, in XYWH format.
|
||||
area (int): The area in pixels of the mask.
|
||||
predicted_iou (float): The model's own prediction of the mask's
|
||||
quality. This is filtered by the pred_iou_thresh parameter.
|
||||
point_coords (list(list(float))): The point coordinates input
|
||||
to the model to generate this mask.
|
||||
stability_score (float): A measure of the mask's quality. This
|
||||
is filtered on using the stability_score_thresh parameter.
|
||||
crop_box (list(float)): The crop of the image used to generate
|
||||
the mask, given in XYWH format.
|
||||
"""
|
||||
|
||||
# Generate masks
|
||||
mask_data = self._generate_masks(image)
|
||||
|
||||
# Filter small disconnected regions and holes in masks
|
||||
if self.min_mask_region_area > 0:
|
||||
mask_data = self.postprocess_small_regions(
|
||||
mask_data,
|
||||
self.min_mask_region_area,
|
||||
max(self.box_nms_thresh, self.crop_nms_thresh),
|
||||
)
|
||||
|
||||
# Encode masks
|
||||
if self.output_mode == 'coco_rle':
|
||||
mask_data['segmentations'] = [coco_encode_rle(rle) for rle in mask_data['rles']]
|
||||
elif self.output_mode == 'binary_mask':
|
||||
mask_data['segmentations'] = [rle_to_mask(rle) for rle in mask_data['rles']]
|
||||
else:
|
||||
mask_data['segmentations'] = mask_data['rles']
|
||||
|
||||
# Write mask records
|
||||
curr_anns = []
|
||||
for idx in range(len(mask_data['segmentations'])):
|
||||
ann = {
|
||||
'segmentation': mask_data['segmentations'][idx],
|
||||
'area': area_from_rle(mask_data['rles'][idx]),
|
||||
'bbox': box_xyxy_to_xywh(mask_data['boxes'][idx]).tolist(),
|
||||
'predicted_iou': mask_data['iou_preds'][idx].item(),
|
||||
'point_coords': [mask_data['points'][idx].tolist()],
|
||||
'stability_score': mask_data['stability_score'][idx].item(),
|
||||
'crop_box': box_xyxy_to_xywh(mask_data['crop_boxes'][idx]).tolist(), }
|
||||
curr_anns.append(ann)
|
||||
|
||||
return curr_anns
|
||||
|
||||
def _generate_masks(self, image: np.ndarray) -> MaskData:
|
||||
orig_size = image.shape[:2]
|
||||
crop_boxes, layer_idxs = generate_crop_boxes(orig_size, self.crop_n_layers, self.crop_overlap_ratio)
|
||||
|
||||
# Iterate over image crops
|
||||
data = MaskData()
|
||||
for crop_box, layer_idx in zip(crop_boxes, layer_idxs):
|
||||
crop_data = self._process_crop(image, crop_box, layer_idx, orig_size)
|
||||
data.cat(crop_data)
|
||||
|
||||
# Remove duplicate masks between crops
|
||||
if len(crop_boxes) > 1:
|
||||
# Prefer masks from smaller crops
|
||||
scores = 1 / box_area(data['crop_boxes'])
|
||||
scores = scores.to(data['boxes'].device)
|
||||
keep_by_nms = batched_nms(
|
||||
data['boxes'].float(),
|
||||
scores,
|
||||
torch.zeros_like(data['boxes'][:, 0]), # categories
|
||||
iou_threshold=self.crop_nms_thresh,
|
||||
)
|
||||
data.filter(keep_by_nms)
|
||||
|
||||
data.to_numpy()
|
||||
return data
|
||||
|
||||
def _process_crop(
|
||||
self,
|
||||
image: np.ndarray,
|
||||
crop_box: List[int],
|
||||
crop_layer_idx: int,
|
||||
orig_size: Tuple[int, ...],
|
||||
) -> MaskData:
|
||||
# Crop the image and calculate embeddings
|
||||
x0, y0, x1, y1 = crop_box
|
||||
cropped_im = image[y0:y1, x0:x1, :]
|
||||
cropped_im_size = cropped_im.shape[:2]
|
||||
self.predictor.set_image(cropped_im)
|
||||
|
||||
# Get points for this crop
|
||||
points_scale = np.array(cropped_im_size)[None, ::-1]
|
||||
points_for_image = self.point_grids[crop_layer_idx] * points_scale
|
||||
|
||||
# Generate masks for this crop in batches
|
||||
data = MaskData()
|
||||
for (points, ) in batch_iterator(self.points_per_batch, points_for_image):
|
||||
batch_data = self._process_batch(points, cropped_im_size, crop_box, orig_size)
|
||||
data.cat(batch_data)
|
||||
del batch_data
|
||||
self.predictor.reset_image()
|
||||
|
||||
# Remove duplicates within this crop.
|
||||
keep_by_nms = batched_nms(
|
||||
data['boxes'].float(),
|
||||
data['iou_preds'],
|
||||
torch.zeros_like(data['boxes'][:, 0]), # categories
|
||||
iou_threshold=self.box_nms_thresh,
|
||||
)
|
||||
data.filter(keep_by_nms)
|
||||
|
||||
# Return to the original image frame
|
||||
data['boxes'] = uncrop_boxes_xyxy(data['boxes'], crop_box)
|
||||
data['points'] = uncrop_points(data['points'], crop_box)
|
||||
data['crop_boxes'] = torch.tensor([crop_box for _ in range(len(data['rles']))])
|
||||
|
||||
return data
|
||||
|
||||
def _process_batch(
|
||||
self,
|
||||
points: np.ndarray,
|
||||
im_size: Tuple[int, ...],
|
||||
crop_box: List[int],
|
||||
orig_size: Tuple[int, ...],
|
||||
) -> MaskData:
|
||||
orig_h, orig_w = orig_size
|
||||
|
||||
# Run model on this batch
|
||||
transformed_points = self.predictor.transform.apply_coords(points, im_size)
|
||||
in_points = torch.as_tensor(transformed_points, device=self.predictor.device)
|
||||
in_labels = torch.ones(in_points.shape[0], dtype=torch.int, device=in_points.device)
|
||||
masks, iou_preds, _ = self.predictor.predict_torch(
|
||||
in_points[:, None, :],
|
||||
in_labels[:, None],
|
||||
multimask_output=True,
|
||||
return_logits=True,
|
||||
)
|
||||
|
||||
# Serialize predictions and store in MaskData
|
||||
data = MaskData(
|
||||
masks=masks.flatten(0, 1),
|
||||
iou_preds=iou_preds.flatten(0, 1),
|
||||
points=torch.as_tensor(points.repeat(masks.shape[1], axis=0)),
|
||||
)
|
||||
del masks
|
||||
|
||||
# Filter by predicted IoU
|
||||
if self.pred_iou_thresh > 0.0:
|
||||
keep_mask = data['iou_preds'] > self.pred_iou_thresh
|
||||
data.filter(keep_mask)
|
||||
|
||||
# Calculate stability score
|
||||
data['stability_score'] = calculate_stability_score(data['masks'], self.predictor.model.mask_threshold,
|
||||
self.stability_score_offset)
|
||||
if self.stability_score_thresh > 0.0:
|
||||
keep_mask = data['stability_score'] >= self.stability_score_thresh
|
||||
data.filter(keep_mask)
|
||||
|
||||
# Threshold masks and calculate boxes
|
||||
data['masks'] = data['masks'] > self.predictor.model.mask_threshold
|
||||
data['boxes'] = batched_mask_to_box(data['masks'])
|
||||
|
||||
# Filter boxes that touch crop boundaries
|
||||
keep_mask = ~is_box_near_crop_edge(data['boxes'], crop_box, [0, 0, orig_w, orig_h])
|
||||
if not torch.all(keep_mask):
|
||||
data.filter(keep_mask)
|
||||
|
||||
# Compress to RLE
|
||||
data['masks'] = uncrop_masks(data['masks'], crop_box, orig_h, orig_w)
|
||||
data['rles'] = mask_to_rle_pytorch(data['masks'])
|
||||
del data['masks']
|
||||
|
||||
return data
|
||||
|
||||
@staticmethod
|
||||
def postprocess_small_regions(mask_data: MaskData, min_area: int, nms_thresh: float) -> MaskData:
|
||||
"""
|
||||
Removes small disconnected regions and holes in masks, then reruns
|
||||
box NMS to remove any new duplicates.
|
||||
|
||||
Edits mask_data in place.
|
||||
|
||||
Requires open-cv as a dependency.
|
||||
"""
|
||||
if len(mask_data['rles']) == 0:
|
||||
return mask_data
|
||||
|
||||
# Filter small disconnected regions and holes
|
||||
new_masks = []
|
||||
scores = []
|
||||
for rle in mask_data['rles']:
|
||||
mask = rle_to_mask(rle)
|
||||
|
||||
mask, changed = remove_small_regions(mask, min_area, mode='holes')
|
||||
unchanged = not changed
|
||||
mask, changed = remove_small_regions(mask, min_area, mode='islands')
|
||||
unchanged = unchanged and not changed
|
||||
|
||||
new_masks.append(torch.as_tensor(mask).unsqueeze(0))
|
||||
# Give score=0 to changed masks and score=1 to unchanged masks
|
||||
# so NMS will prefer ones that didn't need postprocessing
|
||||
scores.append(float(unchanged))
|
||||
|
||||
# Recalculate boxes and remove any new duplicates
|
||||
masks = torch.cat(new_masks, dim=0)
|
||||
boxes = batched_mask_to_box(masks)
|
||||
keep_by_nms = batched_nms(
|
||||
boxes.float(),
|
||||
torch.as_tensor(scores),
|
||||
torch.zeros_like(boxes[:, 0]), # categories
|
||||
iou_threshold=nms_thresh,
|
||||
)
|
||||
|
||||
# Only recalculate RLEs for masks that have changed
|
||||
for i_mask in keep_by_nms:
|
||||
if scores[i_mask] == 0.0:
|
||||
mask_torch = masks[i_mask].unsqueeze(0)
|
||||
mask_data['rles'][i_mask] = mask_to_rle_pytorch(mask_torch)[0]
|
||||
mask_data['boxes'][i_mask] = boxes[i_mask] # update res directly
|
||||
mask_data.filter(keep_by_nms)
|
||||
|
||||
return mask_data
|
240
ultralytics/vit/sam/modules/prompt_predictor.py
Normal file
240
ultralytics/vit/sam/modules/prompt_predictor.py
Normal file
@ -0,0 +1,240 @@
|
||||
from typing import Optional, Tuple
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
from ..autosize import ResizeLongestSide
|
||||
from .sam import Sam
|
||||
|
||||
|
||||
class PromptPredictor:
|
||||
|
||||
def __init__(self, sam_model: Sam) -> None:
|
||||
"""
|
||||
Uses SAM to calculate the image embedding for an image, and then
|
||||
allow repeated, efficient mask prediction given prompts.
|
||||
|
||||
Arguments:
|
||||
sam_model (Sam): The model to use for mask prediction.
|
||||
"""
|
||||
super().__init__()
|
||||
self.model = sam_model
|
||||
self.transform = ResizeLongestSide(sam_model.image_encoder.img_size)
|
||||
self.reset_image()
|
||||
|
||||
def set_image(self, image: np.ndarray, image_format: str = 'RGB') -> None:
|
||||
"""
|
||||
Calculates the image embeddings for the provided image, allowing
|
||||
masks to be predicted with the 'predict' method.
|
||||
|
||||
Arguments:
|
||||
image (np.ndarray): The image for calculating masks. Expects an
|
||||
image in HWC uint8 format, with pixel values in [0, 255].
|
||||
image_format (str): The color format of the image, in ['RGB', 'BGR'].
|
||||
"""
|
||||
assert image_format in {'RGB', 'BGR'}, f"image_format must be in ['RGB', 'BGR'], is {image_format}."
|
||||
if image_format != self.model.image_format:
|
||||
image = image[..., ::-1]
|
||||
|
||||
# Transform the image to the form expected by the model
|
||||
input_image = self.transform.apply_image(image)
|
||||
input_image_torch = torch.as_tensor(input_image, device=self.device)
|
||||
input_image_torch = input_image_torch.permute(2, 0, 1).contiguous()[None, :, :, :]
|
||||
|
||||
self.set_torch_image(input_image_torch, image.shape[:2])
|
||||
|
||||
@torch.no_grad()
|
||||
def set_torch_image(self, transformed_image: torch.Tensor, original_image_size: Tuple[int, ...]) -> None:
|
||||
"""
|
||||
Calculates the image embeddings for the provided image, allowing
|
||||
masks to be predicted with the 'predict' method. Expects the input
|
||||
image to be already transformed to the format expected by the model.
|
||||
|
||||
Arguments:
|
||||
transformed_image (torch.Tensor): The input image, with shape
|
||||
1x3xHxW, which has been transformed with ResizeLongestSide.
|
||||
original_image_size (tuple(int, int)): The size of the image
|
||||
before transformation, in (H, W) format.
|
||||
"""
|
||||
if len(transformed_image.shape) != 4 \
|
||||
or transformed_image.shape[1] != 3 \
|
||||
or max(*transformed_image.shape[2:]) != self.model.image_encoder.img_size:
|
||||
raise ValueError('set_torch_image input must be BCHW with long side {self.model.image_encoder.img_size}.')
|
||||
self.reset_image()
|
||||
|
||||
self.original_size = original_image_size
|
||||
self.input_size = tuple(transformed_image.shape[-2:])
|
||||
input_image = self.model.preprocess(transformed_image)
|
||||
self.features = self.model.image_encoder(input_image)
|
||||
self.is_image_set = True
|
||||
|
||||
def predict(
|
||||
self,
|
||||
point_coords: Optional[np.ndarray] = None,
|
||||
point_labels: Optional[np.ndarray] = None,
|
||||
box: Optional[np.ndarray] = None,
|
||||
mask_input: Optional[np.ndarray] = None,
|
||||
multimask_output: bool = True,
|
||||
return_logits: bool = False,
|
||||
) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
|
||||
"""
|
||||
Predict masks for the given input prompts, using the currently set image.
|
||||
|
||||
Arguments:
|
||||
point_coords (np.ndarray or None): A Nx2 array of point prompts to the
|
||||
model. Each point is in (X,Y) in pixels.
|
||||
point_labels (np.ndarray or None): A length N array of labels for the
|
||||
point prompts. 1 indicates a foreground point and 0 indicates a
|
||||
background point.
|
||||
box (np.ndarray or None): A length 4 array given a box prompt to the
|
||||
model, in XYXY format.
|
||||
mask_input (np.ndarray): A low resolution mask input to the model, typically
|
||||
coming from a previous prediction iteration. Has form 1xHxW, where
|
||||
for SAM, H=W=256.
|
||||
multimask_output (bool): If true, the model will return three masks.
|
||||
For ambiguous input prompts (such as a single click), this will often
|
||||
produce better masks than a single prediction. If only a single
|
||||
mask is needed, the model's predicted quality score can be used
|
||||
to select the best mask. For non-ambiguous prompts, such as multiple
|
||||
input prompts, multimask_output=False can give better results.
|
||||
return_logits (bool): If true, returns un-thresholded masks logits
|
||||
instead of a binary mask.
|
||||
|
||||
Returns:
|
||||
(np.ndarray): The output masks in CxHxW format, where C is the
|
||||
number of masks, and (H, W) is the original image size.
|
||||
(np.ndarray): An array of length C containing the model's
|
||||
predictions for the quality of each mask.
|
||||
(np.ndarray): An array of shape CxHxW, where C is the number
|
||||
of masks and H=W=256. These low resolution logits can be passed to
|
||||
a subsequent iteration as mask input.
|
||||
"""
|
||||
if not self.is_image_set:
|
||||
raise RuntimeError('An image must be set with .set_image(...) before mask prediction.')
|
||||
|
||||
# Transform input prompts
|
||||
coords_torch, labels_torch, box_torch, mask_input_torch = None, None, None, None
|
||||
if point_coords is not None:
|
||||
assert (point_labels is not None), 'point_labels must be supplied if point_coords is supplied.'
|
||||
point_coords = self.transform.apply_coords(point_coords, self.original_size)
|
||||
coords_torch = torch.as_tensor(point_coords, dtype=torch.float, device=self.device)
|
||||
labels_torch = torch.as_tensor(point_labels, dtype=torch.int, device=self.device)
|
||||
coords_torch, labels_torch = coords_torch[None, :, :], labels_torch[None, :]
|
||||
if box is not None:
|
||||
box = self.transform.apply_boxes(box, self.original_size)
|
||||
box_torch = torch.as_tensor(box, dtype=torch.float, device=self.device)
|
||||
box_torch = box_torch[None, :]
|
||||
if mask_input is not None:
|
||||
mask_input_torch = torch.as_tensor(mask_input, dtype=torch.float, device=self.device)
|
||||
mask_input_torch = mask_input_torch[None, :, :, :]
|
||||
|
||||
masks, iou_predictions, low_res_masks = self.predict_torch(
|
||||
coords_torch,
|
||||
labels_torch,
|
||||
box_torch,
|
||||
mask_input_torch,
|
||||
multimask_output,
|
||||
return_logits=return_logits,
|
||||
)
|
||||
|
||||
masks_np = masks[0].detach().cpu().numpy()
|
||||
iou_predictions_np = iou_predictions[0].detach().cpu().numpy()
|
||||
low_res_masks_np = low_res_masks[0].detach().cpu().numpy()
|
||||
return masks_np, iou_predictions_np, low_res_masks_np
|
||||
|
||||
@torch.no_grad()
|
||||
def predict_torch(
|
||||
self,
|
||||
point_coords: Optional[torch.Tensor],
|
||||
point_labels: Optional[torch.Tensor],
|
||||
boxes: Optional[torch.Tensor] = None,
|
||||
mask_input: Optional[torch.Tensor] = None,
|
||||
multimask_output: bool = True,
|
||||
return_logits: bool = False,
|
||||
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
||||
"""
|
||||
Predict masks for the given input prompts, using the currently set image.
|
||||
Input prompts are batched torch tensors and are expected to already be
|
||||
transformed to the input frame using ResizeLongestSide.
|
||||
|
||||
Arguments:
|
||||
point_coords (torch.Tensor or None): A BxNx2 array of point prompts to the
|
||||
model. Each point is in (X,Y) in pixels.
|
||||
point_labels (torch.Tensor or None): A BxN array of labels for the
|
||||
point prompts. 1 indicates a foreground point and 0 indicates a
|
||||
background point.
|
||||
boxes (np.ndarray or None): A Bx4 array given a box prompt to the
|
||||
model, in XYXY format.
|
||||
mask_input (np.ndarray): A low resolution mask input to the model, typically
|
||||
coming from a previous prediction iteration. Has form Bx1xHxW, where
|
||||
for SAM, H=W=256. Masks returned by a previous iteration of the
|
||||
predict method do not need further transformation.
|
||||
multimask_output (bool): If true, the model will return three masks.
|
||||
For ambiguous input prompts (such as a single click), this will often
|
||||
produce better masks than a single prediction. If only a single
|
||||
mask is needed, the model's predicted quality score can be used
|
||||
to select the best mask. For non-ambiguous prompts, such as multiple
|
||||
input prompts, multimask_output=False can give better results.
|
||||
return_logits (bool): If true, returns un-thresholded masks logits
|
||||
instead of a binary mask.
|
||||
|
||||
Returns:
|
||||
(torch.Tensor): The output masks in BxCxHxW format, where C is the
|
||||
number of masks, and (H, W) is the original image size.
|
||||
(torch.Tensor): An array of shape BxC containing the model's
|
||||
predictions for the quality of each mask.
|
||||
(torch.Tensor): An array of shape BxCxHxW, where C is the number
|
||||
of masks and H=W=256. These low res logits can be passed to
|
||||
a subsequent iteration as mask input.
|
||||
"""
|
||||
if not self.is_image_set:
|
||||
raise RuntimeError('An image must be set with .set_image(...) before mask prediction.')
|
||||
|
||||
points = (point_coords, point_labels) if point_coords is not None else None
|
||||
# Embed prompts
|
||||
sparse_embeddings, dense_embeddings = self.model.prompt_encoder(
|
||||
points=points,
|
||||
boxes=boxes,
|
||||
masks=mask_input,
|
||||
)
|
||||
|
||||
# Predict masks
|
||||
low_res_masks, iou_predictions = self.model.mask_decoder(
|
||||
image_embeddings=self.features,
|
||||
image_pe=self.model.prompt_encoder.get_dense_pe(),
|
||||
sparse_prompt_embeddings=sparse_embeddings,
|
||||
dense_prompt_embeddings=dense_embeddings,
|
||||
multimask_output=multimask_output,
|
||||
)
|
||||
|
||||
# Upscale the masks to the original image resolution
|
||||
masks = self.model.postprocess_masks(low_res_masks, self.input_size, self.original_size)
|
||||
|
||||
if not return_logits:
|
||||
masks = masks > self.model.mask_threshold
|
||||
|
||||
return masks, iou_predictions, low_res_masks
|
||||
|
||||
def get_image_embedding(self) -> torch.Tensor:
|
||||
"""
|
||||
Returns the image embeddings for the currently set image, with
|
||||
shape 1xCxHxW, where C is the embedding dimension and (H,W) are
|
||||
the embedding spatial dimension of SAM (typically C=256, H=W=64).
|
||||
"""
|
||||
if not self.is_image_set:
|
||||
raise RuntimeError('An image must be set with .set_image(...) to generate an embedding.')
|
||||
assert self.features is not None, 'Features must exist if an image has been set.'
|
||||
return self.features
|
||||
|
||||
@property
|
||||
def device(self) -> torch.device:
|
||||
return self.model.device
|
||||
|
||||
def reset_image(self) -> None:
|
||||
"""Resets the currently set image."""
|
||||
self.is_image_set = False
|
||||
self.features = None
|
||||
self.orig_h = None
|
||||
self.orig_w = None
|
||||
self.input_h = None
|
||||
self.input_w = None
|
169
ultralytics/vit/sam/modules/sam.py
Normal file
169
ultralytics/vit/sam/modules/sam.py
Normal file
@ -0,0 +1,169 @@
|
||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
|
||||
# This source code is licensed under the license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
from typing import Any, Dict, List, Tuple
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
from torch.nn import functional as F
|
||||
|
||||
from .decoders import MaskDecoder
|
||||
from .encoders import ImageEncoderViT, PromptEncoder
|
||||
|
||||
|
||||
class Sam(nn.Module):
|
||||
mask_threshold: float = 0.0
|
||||
image_format: str = 'RGB'
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
image_encoder: ImageEncoderViT,
|
||||
prompt_encoder: PromptEncoder,
|
||||
mask_decoder: MaskDecoder,
|
||||
pixel_mean: List[float] = [123.675, 116.28, 103.53],
|
||||
pixel_std: List[float] = [58.395, 57.12, 57.375],
|
||||
) -> None:
|
||||
"""
|
||||
SAM predicts object masks from an image and input prompts.
|
||||
|
||||
Arguments:
|
||||
image_encoder (ImageEncoderViT): The backbone used to encode the
|
||||
image into image embeddings that allow for efficient mask prediction.
|
||||
prompt_encoder (PromptEncoder): Encodes various types of input prompts.
|
||||
mask_decoder (MaskDecoder): Predicts masks from the image embeddings
|
||||
and encoded prompts.
|
||||
pixel_mean (list(float)): Mean values for normalizing pixels in the input image.
|
||||
pixel_std (list(float)): Std values for normalizing pixels in the input image.
|
||||
"""
|
||||
super().__init__()
|
||||
self.image_encoder = image_encoder
|
||||
self.prompt_encoder = prompt_encoder
|
||||
self.mask_decoder = mask_decoder
|
||||
self.register_buffer('pixel_mean', torch.Tensor(pixel_mean).view(-1, 1, 1), False)
|
||||
self.register_buffer('pixel_std', torch.Tensor(pixel_std).view(-1, 1, 1), False)
|
||||
|
||||
@property
|
||||
def device(self) -> Any:
|
||||
return self.pixel_mean.device
|
||||
|
||||
@torch.no_grad()
|
||||
def forward(
|
||||
self,
|
||||
batched_input: List[Dict[str, Any]],
|
||||
multimask_output: bool,
|
||||
) -> List[Dict[str, torch.Tensor]]:
|
||||
"""
|
||||
Predicts masks end-to-end from provided images and prompts.
|
||||
If prompts are not known in advance, using SamPredictor is
|
||||
recommended over calling the model directly.
|
||||
|
||||
Arguments:
|
||||
batched_input (list(dict)): A list over input images, each a
|
||||
dictionary with the following keys. A prompt key can be
|
||||
excluded if it is not present.
|
||||
'image': The image as a torch tensor in 3xHxW format,
|
||||
already transformed for input to the model.
|
||||
'original_size': (tuple(int, int)) The original size of
|
||||
the image before transformation, as (H, W).
|
||||
'point_coords': (torch.Tensor) Batched point prompts for
|
||||
this image, with shape BxNx2. Already transformed to the
|
||||
input frame of the model.
|
||||
'point_labels': (torch.Tensor) Batched labels for point prompts,
|
||||
with shape BxN.
|
||||
'boxes': (torch.Tensor) Batched box inputs, with shape Bx4.
|
||||
Already transformed to the input frame of the model.
|
||||
'mask_inputs': (torch.Tensor) Batched mask inputs to the model,
|
||||
in the form Bx1xHxW.
|
||||
multimask_output (bool): Whether the model should predict multiple
|
||||
disambiguating masks, or return a single mask.
|
||||
|
||||
Returns:
|
||||
(list(dict)): A list over input images, where each element is
|
||||
as dictionary with the following keys.
|
||||
'masks': (torch.Tensor) Batched binary mask predictions,
|
||||
with shape BxCxHxW, where B is the number of input prompts,
|
||||
C is determined by multimask_output, and (H, W) is the
|
||||
original size of the image.
|
||||
'iou_predictions': (torch.Tensor) The model's predictions
|
||||
of mask quality, in shape BxC.
|
||||
'low_res_logits': (torch.Tensor) Low resolution logits with
|
||||
shape BxCxHxW, where H=W=256. Can be passed as mask input
|
||||
to subsequent iterations of prediction.
|
||||
"""
|
||||
input_images = torch.stack([self.preprocess(x['image']) for x in batched_input], dim=0)
|
||||
image_embeddings = self.image_encoder(input_images)
|
||||
|
||||
outputs = []
|
||||
for image_record, curr_embedding in zip(batched_input, image_embeddings):
|
||||
if 'point_coords' in image_record:
|
||||
points = (image_record['point_coords'], image_record['point_labels'])
|
||||
else:
|
||||
points = None
|
||||
sparse_embeddings, dense_embeddings = self.prompt_encoder(
|
||||
points=points,
|
||||
boxes=image_record.get('boxes', None),
|
||||
masks=image_record.get('mask_inputs', None),
|
||||
)
|
||||
low_res_masks, iou_predictions = self.mask_decoder(
|
||||
image_embeddings=curr_embedding.unsqueeze(0),
|
||||
image_pe=self.prompt_encoder.get_dense_pe(),
|
||||
sparse_prompt_embeddings=sparse_embeddings,
|
||||
dense_prompt_embeddings=dense_embeddings,
|
||||
multimask_output=multimask_output,
|
||||
)
|
||||
masks = self.postprocess_masks(
|
||||
low_res_masks,
|
||||
input_size=image_record['image'].shape[-2:],
|
||||
original_size=image_record['original_size'],
|
||||
)
|
||||
masks = masks > self.mask_threshold
|
||||
outputs.append({
|
||||
'masks': masks,
|
||||
'iou_predictions': iou_predictions,
|
||||
'low_res_logits': low_res_masks, })
|
||||
return outputs
|
||||
|
||||
def postprocess_masks(
|
||||
self,
|
||||
masks: torch.Tensor,
|
||||
input_size: Tuple[int, ...],
|
||||
original_size: Tuple[int, ...],
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Remove padding and upscale masks to the original image size.
|
||||
|
||||
Arguments:
|
||||
masks (torch.Tensor): Batched masks from the mask_decoder,
|
||||
in BxCxHxW format.
|
||||
input_size (tuple(int, int)): The size of the image input to the
|
||||
model, in (H, W) format. Used to remove padding.
|
||||
original_size (tuple(int, int)): The original size of the image
|
||||
before resizing for input to the model, in (H, W) format.
|
||||
|
||||
Returns:
|
||||
(torch.Tensor): Batched masks in BxCxHxW format, where (H, W)
|
||||
is given by original_size.
|
||||
"""
|
||||
masks = F.interpolate(
|
||||
masks,
|
||||
(self.image_encoder.img_size, self.image_encoder.img_size),
|
||||
mode='bilinear',
|
||||
align_corners=False,
|
||||
)
|
||||
masks = masks[..., :input_size[0], :input_size[1]]
|
||||
masks = F.interpolate(masks, original_size, mode='bilinear', align_corners=False)
|
||||
return masks
|
||||
|
||||
def preprocess(self, x: torch.Tensor) -> torch.Tensor:
|
||||
"""Normalize pixel values and pad to a square input."""
|
||||
# Normalize colors
|
||||
x = (x - self.pixel_mean) / self.pixel_std
|
||||
|
||||
# Pad
|
||||
h, w = x.shape[-2:]
|
||||
padh = self.image_encoder.img_size - h
|
||||
padw = self.image_encoder.img_size - w
|
||||
return F.pad(x, (0, padw, 0, padh))
|
233
ultralytics/vit/sam/modules/transformer.py
Normal file
233
ultralytics/vit/sam/modules/transformer.py
Normal file
@ -0,0 +1,233 @@
|
||||
import math
|
||||
from typing import Tuple, Type
|
||||
|
||||
import torch
|
||||
from torch import Tensor, nn
|
||||
|
||||
from ultralytics.nn.modules import MLPBlock
|
||||
|
||||
|
||||
class TwoWayTransformer(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
depth: int,
|
||||
embedding_dim: int,
|
||||
num_heads: int,
|
||||
mlp_dim: int,
|
||||
activation: Type[nn.Module] = nn.ReLU,
|
||||
attention_downsample_rate: int = 2,
|
||||
) -> None:
|
||||
"""
|
||||
A transformer decoder that attends to an input image using
|
||||
queries whose positional embedding is supplied.
|
||||
|
||||
Args:
|
||||
depth (int): number of layers in the transformer
|
||||
embedding_dim (int): the channel dimension for the input embeddings
|
||||
num_heads (int): the number of heads for multihead attention. Must
|
||||
divide embedding_dim
|
||||
mlp_dim (int): the channel dimension internal to the MLP block
|
||||
activation (nn.Module): the activation to use in the MLP block
|
||||
"""
|
||||
super().__init__()
|
||||
self.depth = depth
|
||||
self.embedding_dim = embedding_dim
|
||||
self.num_heads = num_heads
|
||||
self.mlp_dim = mlp_dim
|
||||
self.layers = nn.ModuleList()
|
||||
|
||||
for i in range(depth):
|
||||
self.layers.append(
|
||||
TwoWayAttentionBlock(
|
||||
embedding_dim=embedding_dim,
|
||||
num_heads=num_heads,
|
||||
mlp_dim=mlp_dim,
|
||||
activation=activation,
|
||||
attention_downsample_rate=attention_downsample_rate,
|
||||
skip_first_layer_pe=(i == 0),
|
||||
))
|
||||
|
||||
self.final_attn_token_to_image = Attention(embedding_dim, num_heads, downsample_rate=attention_downsample_rate)
|
||||
self.norm_final_attn = nn.LayerNorm(embedding_dim)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
image_embedding: Tensor,
|
||||
image_pe: Tensor,
|
||||
point_embedding: Tensor,
|
||||
) -> Tuple[Tensor, Tensor]:
|
||||
"""
|
||||
Args:
|
||||
image_embedding (torch.Tensor): image to attend to. Should be shape
|
||||
B x embedding_dim x h x w for any h and w.
|
||||
image_pe (torch.Tensor): the positional encoding to add to the image. Must
|
||||
have the same shape as image_embedding.
|
||||
point_embedding (torch.Tensor): the embedding to add to the query points.
|
||||
Must have shape B x N_points x embedding_dim for any N_points.
|
||||
|
||||
Returns:
|
||||
torch.Tensor: the processed point_embedding
|
||||
torch.Tensor: the processed image_embedding
|
||||
"""
|
||||
# BxCxHxW -> BxHWxC == B x N_image_tokens x C
|
||||
bs, c, h, w = image_embedding.shape
|
||||
image_embedding = image_embedding.flatten(2).permute(0, 2, 1)
|
||||
image_pe = image_pe.flatten(2).permute(0, 2, 1)
|
||||
|
||||
# Prepare queries
|
||||
queries = point_embedding
|
||||
keys = image_embedding
|
||||
|
||||
# Apply transformer blocks and final layernorm
|
||||
for layer in self.layers:
|
||||
queries, keys = layer(
|
||||
queries=queries,
|
||||
keys=keys,
|
||||
query_pe=point_embedding,
|
||||
key_pe=image_pe,
|
||||
)
|
||||
|
||||
# Apply the final attention layer from the points to the image
|
||||
q = queries + point_embedding
|
||||
k = keys + image_pe
|
||||
attn_out = self.final_attn_token_to_image(q=q, k=k, v=keys)
|
||||
queries = queries + attn_out
|
||||
queries = self.norm_final_attn(queries)
|
||||
|
||||
return queries, keys
|
||||
|
||||
|
||||
class TwoWayAttentionBlock(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
embedding_dim: int,
|
||||
num_heads: int,
|
||||
mlp_dim: int = 2048,
|
||||
activation: Type[nn.Module] = nn.ReLU,
|
||||
attention_downsample_rate: int = 2,
|
||||
skip_first_layer_pe: bool = False,
|
||||
) -> None:
|
||||
"""
|
||||
A transformer block with four layers: (1) self-attention of sparse
|
||||
inputs, (2) cross attention of sparse inputs to dense inputs, (3) mlp
|
||||
block on sparse inputs, and (4) cross attention of dense inputs to sparse
|
||||
inputs.
|
||||
|
||||
Arguments:
|
||||
embedding_dim (int): the channel dimension of the embeddings
|
||||
num_heads (int): the number of heads in the attention layers
|
||||
mlp_dim (int): the hidden dimension of the mlp block
|
||||
activation (nn.Module): the activation of the mlp block
|
||||
skip_first_layer_pe (bool): skip the PE on the first layer
|
||||
"""
|
||||
super().__init__()
|
||||
self.self_attn = Attention(embedding_dim, num_heads)
|
||||
self.norm1 = nn.LayerNorm(embedding_dim)
|
||||
|
||||
self.cross_attn_token_to_image = Attention(embedding_dim, num_heads, downsample_rate=attention_downsample_rate)
|
||||
self.norm2 = nn.LayerNorm(embedding_dim)
|
||||
|
||||
self.mlp = MLPBlock(embedding_dim, mlp_dim, activation)
|
||||
self.norm3 = nn.LayerNorm(embedding_dim)
|
||||
|
||||
self.norm4 = nn.LayerNorm(embedding_dim)
|
||||
self.cross_attn_image_to_token = Attention(embedding_dim, num_heads, downsample_rate=attention_downsample_rate)
|
||||
|
||||
self.skip_first_layer_pe = skip_first_layer_pe
|
||||
|
||||
def forward(self, queries: Tensor, keys: Tensor, query_pe: Tensor, key_pe: Tensor) -> Tuple[Tensor, Tensor]:
|
||||
"""Apply self-attention and cross-attention to queries and keys and return the processed embeddings."""
|
||||
|
||||
# Self attention block
|
||||
if self.skip_first_layer_pe:
|
||||
queries = self.self_attn(q=queries, k=queries, v=queries)
|
||||
else:
|
||||
q = queries + query_pe
|
||||
attn_out = self.self_attn(q=q, k=q, v=queries)
|
||||
queries = queries + attn_out
|
||||
queries = self.norm1(queries)
|
||||
|
||||
# Cross attention block, tokens attending to image embedding
|
||||
q = queries + query_pe
|
||||
k = keys + key_pe
|
||||
attn_out = self.cross_attn_token_to_image(q=q, k=k, v=keys)
|
||||
queries = queries + attn_out
|
||||
queries = self.norm2(queries)
|
||||
|
||||
# MLP block
|
||||
mlp_out = self.mlp(queries)
|
||||
queries = queries + mlp_out
|
||||
queries = self.norm3(queries)
|
||||
|
||||
# Cross attention block, image embedding attending to tokens
|
||||
q = queries + query_pe
|
||||
k = keys + key_pe
|
||||
attn_out = self.cross_attn_image_to_token(q=k, k=q, v=queries)
|
||||
keys = keys + attn_out
|
||||
keys = self.norm4(keys)
|
||||
|
||||
return queries, keys
|
||||
|
||||
|
||||
class Attention(nn.Module):
|
||||
"""
|
||||
An attention layer that allows for downscaling the size of the embedding
|
||||
after projection to queries, keys, and values.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
embedding_dim: int,
|
||||
num_heads: int,
|
||||
downsample_rate: int = 1,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
self.embedding_dim = embedding_dim
|
||||
self.internal_dim = embedding_dim // downsample_rate
|
||||
self.num_heads = num_heads
|
||||
assert self.internal_dim % num_heads == 0, 'num_heads must divide embedding_dim.'
|
||||
|
||||
self.q_proj = nn.Linear(embedding_dim, self.internal_dim)
|
||||
self.k_proj = nn.Linear(embedding_dim, self.internal_dim)
|
||||
self.v_proj = nn.Linear(embedding_dim, self.internal_dim)
|
||||
self.out_proj = nn.Linear(self.internal_dim, embedding_dim)
|
||||
|
||||
def _separate_heads(self, x: Tensor, num_heads: int) -> Tensor:
|
||||
"""Separate the input tensor into the specified number of attention heads."""
|
||||
b, n, c = x.shape
|
||||
x = x.reshape(b, n, num_heads, c // num_heads)
|
||||
return x.transpose(1, 2) # B x N_heads x N_tokens x C_per_head
|
||||
|
||||
def _recombine_heads(self, x: Tensor) -> Tensor:
|
||||
"""Recombine the separated attention heads into a single tensor."""
|
||||
b, n_heads, n_tokens, c_per_head = x.shape
|
||||
x = x.transpose(1, 2)
|
||||
return x.reshape(b, n_tokens, n_heads * c_per_head) # B x N_tokens x C
|
||||
|
||||
def forward(self, q: Tensor, k: Tensor, v: Tensor) -> Tensor:
|
||||
"""Compute the attention output given the input query, key, and value tensors."""
|
||||
|
||||
# Input projections
|
||||
q = self.q_proj(q)
|
||||
k = self.k_proj(k)
|
||||
v = self.v_proj(v)
|
||||
|
||||
# Separate into heads
|
||||
q = self._separate_heads(q, self.num_heads)
|
||||
k = self._separate_heads(k, self.num_heads)
|
||||
v = self._separate_heads(v, self.num_heads)
|
||||
|
||||
# Attention
|
||||
_, _, _, c_per_head = q.shape
|
||||
attn = q @ k.permute(0, 1, 3, 2) # B x N_heads x N_tokens x N_tokens
|
||||
attn = attn / math.sqrt(c_per_head)
|
||||
attn = torch.softmax(attn, dim=-1)
|
||||
|
||||
# Get output
|
||||
out = attn @ v
|
||||
out = self._recombine_heads(out)
|
||||
out = self.out_proj(out)
|
||||
|
||||
return out
|
52
ultralytics/vit/sam/predict.py
Normal file
52
ultralytics/vit/sam/predict.py
Normal file
@ -0,0 +1,52 @@
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
from ultralytics.yolo.engine.predictor import BasePredictor
|
||||
from ultralytics.yolo.engine.results import Results
|
||||
from ultralytics.yolo.utils.torch_utils import select_device
|
||||
|
||||
from .modules.mask_generator import SamAutomaticMaskGenerator
|
||||
|
||||
|
||||
class Predictor(BasePredictor):
|
||||
|
||||
def preprocess(self, im):
|
||||
"""Prepares input image for inference."""
|
||||
# TODO: Only support bs=1 for now
|
||||
# im = ResizeLongestSide(1024).apply_image(im[0])
|
||||
# im = torch.as_tensor(im, device=self.device)
|
||||
# im = im.permute(2, 0, 1).contiguous()[None, :, :, :]
|
||||
return im[0]
|
||||
|
||||
def setup_model(self, model):
|
||||
"""Set up YOLO model with specified thresholds and device."""
|
||||
device = select_device(self.args.device)
|
||||
model.eval()
|
||||
self.model = SamAutomaticMaskGenerator(model.to(device),
|
||||
pred_iou_thresh=self.args.conf,
|
||||
box_nms_thresh=self.args.iou)
|
||||
self.device = device
|
||||
# TODO: Temporary settings for compatibility
|
||||
self.model.pt = False
|
||||
self.model.triton = False
|
||||
self.model.stride = 32
|
||||
self.model.fp16 = False
|
||||
self.done_warmup = True
|
||||
|
||||
def postprocess(self, preds, path, orig_imgs):
|
||||
"""Postprocesses inference output predictions to create detection masks for objects."""
|
||||
names = dict(enumerate(list(range(len(preds)))))
|
||||
results = []
|
||||
# TODO
|
||||
for i, pred in enumerate([preds]):
|
||||
masks = torch.from_numpy(np.stack([p['segmentation'] for p in pred], axis=0))
|
||||
orig_img = orig_imgs[i] if isinstance(orig_imgs, list) else orig_imgs
|
||||
path = self.batch[0]
|
||||
img_path = path[i] if isinstance(path, list) else path
|
||||
results.append(Results(orig_img=orig_img, path=img_path, names=names, masks=masks))
|
||||
return results
|
||||
|
||||
# def __call__(self, source=None, model=None, stream=False):
|
||||
# frame = cv2.imread(source)
|
||||
# preds = self.model.generate(frame)
|
||||
# return self.postprocess(preds, source, frame)
|
@ -25,7 +25,6 @@ verbose: True # whether to print verbose output
|
||||
seed: 0 # random seed for reproducibility
|
||||
deterministic: True # whether to enable deterministic mode
|
||||
single_cls: False # train multi-class data as single-class
|
||||
image_weights: False # use weighted image selection for training
|
||||
rect: False # rectangular training if mode='train' or rectangular validation if mode='val'
|
||||
cos_lr: False # use cosine learning rate scheduler
|
||||
close_mosaic: 0 # (int) disable mosaic augmentation for final epochs
|
||||
|
@ -1,9 +1,9 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
|
||||
from .base import BaseDataset
|
||||
from .build import build_classification_dataloader, build_dataloader, load_inference_source
|
||||
from .build import build_dataloader, build_yolo_dataset, load_inference_source
|
||||
from .dataset import ClassificationDataset, SemanticDataset, YOLODataset
|
||||
from .dataset_wrappers import MixAndRectDataset
|
||||
|
||||
__all__ = ('BaseDataset', 'ClassificationDataset', 'MixAndRectDataset', 'SemanticDataset', 'YOLODataset',
|
||||
'build_classification_dataloader', 'build_dataloader', 'load_inference_source')
|
||||
'build_yolo_dataset', 'build_dataloader', 'load_inference_source')
|
||||
|
42
ultralytics/yolo/data/annotator.py
Normal file
42
ultralytics/yolo/data/annotator.py
Normal file
@ -0,0 +1,42 @@
|
||||
from pathlib import Path
|
||||
|
||||
from ultralytics import YOLO
|
||||
from ultralytics.vit.sam import PromptPredictor, build_sam
|
||||
from ultralytics.yolo.utils.torch_utils import select_device
|
||||
|
||||
|
||||
def auto_annotate(data, det_model='yolov8x.pt', sam_model='sam_b.pt', device='', output_dir=None):
|
||||
device = select_device(device)
|
||||
det_model = YOLO(det_model)
|
||||
sam_model = build_sam(sam_model)
|
||||
det_model.to(device)
|
||||
sam_model.to(device)
|
||||
|
||||
if not output_dir:
|
||||
output_dir = Path(str(data)).parent / 'labels'
|
||||
Path(output_dir).mkdir(exist_ok=True, parents=True)
|
||||
|
||||
prompt_predictor = PromptPredictor(sam_model)
|
||||
det_results = det_model(data, stream=True)
|
||||
|
||||
for result in det_results:
|
||||
boxes = result.boxes.xyxy # Boxes object for bbox outputs
|
||||
class_ids = result.boxes.cls.int().tolist() # noqa
|
||||
prompt_predictor.set_image(result.orig_img)
|
||||
masks, _, _ = prompt_predictor.predict_torch(
|
||||
point_coords=None,
|
||||
point_labels=None,
|
||||
boxes=prompt_predictor.transform.apply_boxes_torch(boxes, result.orig_shape[:2]),
|
||||
multimask_output=False,
|
||||
)
|
||||
|
||||
result.update(masks=masks.squeeze(1))
|
||||
segments = result.masks.xyn # noqa
|
||||
|
||||
with open(str(Path(output_dir) / Path(result.path).stem) + '.txt', 'w') as f:
|
||||
for i in range(len(segments)):
|
||||
s = segments[i]
|
||||
if len(s) == 0:
|
||||
continue
|
||||
segment = map(str, segments[i].reshape(-1).tolist())
|
||||
f.write(f'{class_ids[i]} ' + ' '.join(segment) + '\n')
|
@ -24,17 +24,17 @@ class BaseDataset(Dataset):
|
||||
Base dataset class for loading and processing image data.
|
||||
|
||||
Args:
|
||||
img_path (str): Image path.
|
||||
imgsz (int): Target image size for resizing. Default is 640.
|
||||
cache (bool): Cache images in memory or on disk for faster loading. Default is False.
|
||||
augment (bool): Apply data augmentation. Default is True.
|
||||
hyp (dict): Dictionary of hyperparameters for data augmentation. Default is None.
|
||||
prefix (str): Prefix for file paths. Default is an empty string.
|
||||
rect (bool): Enable rectangular training. Default is False.
|
||||
batch_size (int): Batch size for rectangular training. Default is None.
|
||||
stride (int): Stride for rectangular training. Default is 32.
|
||||
pad (float): Padding for rectangular training. Default is 0.5.
|
||||
single_cls (bool): Use a single class for all labels. Default is False.
|
||||
img_path (str): Path to the folder containing images.
|
||||
imgsz (int, optional): Image size. Defaults to 640.
|
||||
cache (bool, optional): Cache images to RAM or disk during training. Defaults to False.
|
||||
augment (bool, optional): If True, data augmentation is applied. Defaults to True.
|
||||
hyp (dict, optional): Hyperparameters to apply data augmentation. Defaults to None.
|
||||
prefix (str, optional): Prefix to print in log messages. Defaults to ''.
|
||||
rect (bool, optional): If True, rectangular training is used. Defaults to False.
|
||||
batch_size (int, optional): Size of batches. Defaults to None.
|
||||
stride (int, optional): Stride. Defaults to 32.
|
||||
pad (float, optional): Padding. Defaults to 0.0.
|
||||
single_cls (bool, optional): If True, single class training is used. Defaults to False.
|
||||
classes (list): List of included classes. Default is None.
|
||||
|
||||
Attributes:
|
||||
|
@ -14,9 +14,8 @@ from ultralytics.yolo.data.dataloaders.stream_loaders import (LOADERS, LoadImage
|
||||
from ultralytics.yolo.data.utils import IMG_FORMATS, VID_FORMATS
|
||||
from ultralytics.yolo.utils.checks import check_file
|
||||
|
||||
from ..utils import LOGGER, RANK, colorstr
|
||||
from ..utils.torch_utils import torch_distributed_zero_first
|
||||
from .dataset import ClassificationDataset, YOLODataset
|
||||
from ..utils import RANK, colorstr
|
||||
from .dataset import YOLODataset
|
||||
from .utils import PIN_MEMORY
|
||||
|
||||
|
||||
@ -70,34 +69,31 @@ def seed_worker(worker_id): # noqa
|
||||
random.seed(worker_seed)
|
||||
|
||||
|
||||
def build_dataloader(cfg, batch, img_path, data_info, stride=32, rect=False, rank=-1, mode='train'):
|
||||
"""Return an InfiniteDataLoader or DataLoader for training or validation set."""
|
||||
assert mode in ['train', 'val']
|
||||
shuffle = mode == 'train'
|
||||
if cfg.rect and shuffle:
|
||||
LOGGER.warning("WARNING ⚠️ 'rect=True' is incompatible with DataLoader shuffle, setting shuffle=False")
|
||||
shuffle = False
|
||||
with torch_distributed_zero_first(rank): # init dataset *.cache only once if DDP
|
||||
dataset = YOLODataset(
|
||||
img_path=img_path,
|
||||
imgsz=cfg.imgsz,
|
||||
batch_size=batch,
|
||||
augment=mode == 'train', # augmentation
|
||||
hyp=cfg, # TODO: probably add a get_hyps_from_cfg function
|
||||
rect=cfg.rect or rect, # rectangular batches
|
||||
cache=cfg.cache or None,
|
||||
single_cls=cfg.single_cls or False,
|
||||
stride=int(stride),
|
||||
pad=0.0 if mode == 'train' else 0.5,
|
||||
prefix=colorstr(f'{mode}: '),
|
||||
use_segments=cfg.task == 'segment',
|
||||
use_keypoints=cfg.task == 'pose',
|
||||
classes=cfg.classes,
|
||||
data=data_info)
|
||||
def build_yolo_dataset(cfg, img_path, batch, data_info, mode='train', rect=False, stride=32):
|
||||
"""Build YOLO Dataset"""
|
||||
dataset = YOLODataset(
|
||||
img_path=img_path,
|
||||
imgsz=cfg.imgsz,
|
||||
batch_size=batch,
|
||||
augment=mode == 'train', # augmentation
|
||||
hyp=cfg, # TODO: probably add a get_hyps_from_cfg function
|
||||
rect=cfg.rect or rect, # rectangular batches
|
||||
cache=cfg.cache or None,
|
||||
single_cls=cfg.single_cls or False,
|
||||
stride=int(stride),
|
||||
pad=0.0 if mode == 'train' else 0.5,
|
||||
prefix=colorstr(f'{mode}: '),
|
||||
use_segments=cfg.task == 'segment',
|
||||
use_keypoints=cfg.task == 'pose',
|
||||
classes=cfg.classes,
|
||||
data=data_info)
|
||||
return dataset
|
||||
|
||||
|
||||
def build_dataloader(dataset, batch, workers, shuffle=True, rank=-1):
|
||||
"""Return an InfiniteDataLoader or DataLoader for training or validation set."""
|
||||
batch = min(batch, len(dataset))
|
||||
nd = torch.cuda.device_count() # number of CUDA devices
|
||||
workers = cfg.workers if mode == 'train' else cfg.workers * 2
|
||||
nw = min([os.cpu_count() // max(nd, 1), batch if batch > 1 else 0, workers]) # number of workers
|
||||
sampler = None if rank == -1 else distributed.DistributedSampler(dataset, shuffle=shuffle)
|
||||
generator = torch.Generator()
|
||||
@ -110,36 +106,7 @@ def build_dataloader(cfg, batch, img_path, data_info, stride=32, rect=False, ran
|
||||
pin_memory=PIN_MEMORY,
|
||||
collate_fn=getattr(dataset, 'collate_fn', None),
|
||||
worker_init_fn=seed_worker,
|
||||
generator=generator), dataset
|
||||
|
||||
|
||||
# Build classification
|
||||
# TODO: using cfg like `build_dataloader`
|
||||
def build_classification_dataloader(path,
|
||||
imgsz=224,
|
||||
batch_size=16,
|
||||
augment=True,
|
||||
cache=False,
|
||||
rank=-1,
|
||||
workers=8,
|
||||
shuffle=True):
|
||||
"""Returns Dataloader object to be used with YOLOv5 Classifier."""
|
||||
with torch_distributed_zero_first(rank): # init dataset *.cache only once if DDP
|
||||
dataset = ClassificationDataset(root=path, imgsz=imgsz, augment=augment, cache=cache)
|
||||
batch_size = min(batch_size, len(dataset))
|
||||
nd = torch.cuda.device_count()
|
||||
nw = min([os.cpu_count() // max(nd, 1), batch_size if batch_size > 1 else 0, workers])
|
||||
sampler = None if rank == -1 else distributed.DistributedSampler(dataset, shuffle=shuffle)
|
||||
generator = torch.Generator()
|
||||
generator.manual_seed(6148914691236517205 + RANK)
|
||||
return InfiniteDataLoader(dataset,
|
||||
batch_size=batch_size,
|
||||
shuffle=shuffle and sampler is None,
|
||||
num_workers=nw,
|
||||
sampler=sampler,
|
||||
pin_memory=PIN_MEMORY,
|
||||
worker_init_fn=seed_worker,
|
||||
generator=generator) # or DataLoader(persistent_workers=True)
|
||||
generator=generator)
|
||||
|
||||
|
||||
def check_source(source):
|
||||
@ -168,7 +135,7 @@ def check_source(source):
|
||||
return source, webcam, screenshot, from_img, in_memory, tensor
|
||||
|
||||
|
||||
def load_inference_source(source=None, transforms=None, imgsz=640, vid_stride=1, stride=32, auto=True):
|
||||
def load_inference_source(source=None, imgsz=640, vid_stride=1):
|
||||
"""
|
||||
Loads an inference source for object detection and applies necessary transformations.
|
||||
|
||||
@ -192,23 +159,13 @@ def load_inference_source(source=None, transforms=None, imgsz=640, vid_stride=1,
|
||||
elif in_memory:
|
||||
dataset = source
|
||||
elif webcam:
|
||||
dataset = LoadStreams(source,
|
||||
imgsz=imgsz,
|
||||
stride=stride,
|
||||
auto=auto,
|
||||
transforms=transforms,
|
||||
vid_stride=vid_stride)
|
||||
dataset = LoadStreams(source, imgsz=imgsz, vid_stride=vid_stride)
|
||||
elif screenshot:
|
||||
dataset = LoadScreenshots(source, imgsz=imgsz, stride=stride, auto=auto, transforms=transforms)
|
||||
dataset = LoadScreenshots(source, imgsz=imgsz)
|
||||
elif from_img:
|
||||
dataset = LoadPilAndNumpy(source, imgsz=imgsz, stride=stride, auto=auto, transforms=transforms)
|
||||
dataset = LoadPilAndNumpy(source, imgsz=imgsz)
|
||||
else:
|
||||
dataset = LoadImages(source,
|
||||
imgsz=imgsz,
|
||||
stride=stride,
|
||||
auto=auto,
|
||||
transforms=transforms,
|
||||
vid_stride=vid_stride)
|
||||
dataset = LoadImages(source, imgsz=imgsz, vid_stride=vid_stride)
|
||||
|
||||
# Attach source types to the dataset
|
||||
setattr(dataset, 'source_type', source_type)
|
||||
|
@ -15,7 +15,6 @@ import requests
|
||||
import torch
|
||||
from PIL import Image
|
||||
|
||||
from ultralytics.yolo.data.augment import LetterBox
|
||||
from ultralytics.yolo.data.utils import IMG_FORMATS, VID_FORMATS
|
||||
from ultralytics.yolo.utils import LOGGER, ROOT, is_colab, is_kaggle, ops
|
||||
from ultralytics.yolo.utils.checks import check_requirements
|
||||
@ -31,12 +30,11 @@ class SourceTypes:
|
||||
|
||||
class LoadStreams:
|
||||
# YOLOv8 streamloader, i.e. `yolo predict source='rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP streams`
|
||||
def __init__(self, sources='file.streams', imgsz=640, stride=32, auto=True, transforms=None, vid_stride=1):
|
||||
def __init__(self, sources='file.streams', imgsz=640, vid_stride=1):
|
||||
"""Initialize instance variables and check for consistent input stream shapes."""
|
||||
torch.backends.cudnn.benchmark = True # faster for fixed-size inference
|
||||
self.mode = 'stream'
|
||||
self.imgsz = imgsz
|
||||
self.stride = stride
|
||||
self.vid_stride = vid_stride # video frame-rate stride
|
||||
sources = Path(sources).read_text().rsplit() if os.path.isfile(sources) else [sources]
|
||||
n = len(sources)
|
||||
@ -72,10 +70,6 @@ class LoadStreams:
|
||||
LOGGER.info('') # newline
|
||||
|
||||
# Check for common shapes
|
||||
s = np.stack([LetterBox(imgsz, auto, stride=stride)(image=x).shape for x in self.imgs])
|
||||
self.rect = np.unique(s, axis=0).shape[0] == 1 # rect inference if all shapes equal
|
||||
self.auto = auto and self.rect
|
||||
self.transforms = transforms # optional
|
||||
self.bs = self.__len__()
|
||||
|
||||
if not self.rect:
|
||||
@ -110,14 +104,7 @@ class LoadStreams:
|
||||
raise StopIteration
|
||||
|
||||
im0 = self.imgs.copy()
|
||||
if self.transforms:
|
||||
im = np.stack([self.transforms(x) for x in im0]) # transforms
|
||||
else:
|
||||
im = np.stack([LetterBox(self.imgsz, self.auto, stride=self.stride)(image=x) for x in im0])
|
||||
im = im[..., ::-1].transpose((0, 3, 1, 2)) # BGR to RGB, BHWC to BCHW
|
||||
im = np.ascontiguousarray(im) # contiguous
|
||||
|
||||
return self.sources, im, im0, None, ''
|
||||
return self.sources, im0, None, ''
|
||||
|
||||
def __len__(self):
|
||||
"""Return the length of the sources object."""
|
||||
@ -126,7 +113,7 @@ class LoadStreams:
|
||||
|
||||
class LoadScreenshots:
|
||||
# YOLOv8 screenshot dataloader, i.e. `yolo predict source=screen`
|
||||
def __init__(self, source, imgsz=640, stride=32, auto=True, transforms=None):
|
||||
def __init__(self, source, imgsz=640):
|
||||
"""source = [screen_number left top width height] (pixels)."""
|
||||
check_requirements('mss')
|
||||
import mss # noqa
|
||||
@ -140,9 +127,6 @@ class LoadScreenshots:
|
||||
elif len(params) == 5:
|
||||
self.screen, left, top, width, height = (int(x) for x in params)
|
||||
self.imgsz = imgsz
|
||||
self.stride = stride
|
||||
self.transforms = transforms
|
||||
self.auto = auto
|
||||
self.mode = 'stream'
|
||||
self.frame = 0
|
||||
self.sct = mss.mss()
|
||||
@ -165,19 +149,13 @@ class LoadScreenshots:
|
||||
im0 = np.array(self.sct.grab(self.monitor))[:, :, :3] # [:, :, :3] BGRA to BGR
|
||||
s = f'screen {self.screen} (LTWH): {self.left},{self.top},{self.width},{self.height}: '
|
||||
|
||||
if self.transforms:
|
||||
im = self.transforms(im0) # transforms
|
||||
else:
|
||||
im = LetterBox(self.imgsz, self.auto, stride=self.stride)(image=im0)
|
||||
im = im.transpose((2, 0, 1))[::-1] # HWC to CHW, BGR to RGB
|
||||
im = np.ascontiguousarray(im) # contiguous
|
||||
self.frame += 1
|
||||
return str(self.screen), im, im0, None, s # screen, img, original img, im0s, s
|
||||
return str(self.screen), im0, None, s # screen, img, original img, im0s, s
|
||||
|
||||
|
||||
class LoadImages:
|
||||
# YOLOv8 image/video dataloader, i.e. `yolo predict source=image.jpg/vid.mp4`
|
||||
def __init__(self, path, imgsz=640, stride=32, auto=True, transforms=None, vid_stride=1):
|
||||
def __init__(self, path, imgsz=640, vid_stride=1):
|
||||
"""Initialize the Dataloader and raise FileNotFoundError if file not found."""
|
||||
if isinstance(path, str) and Path(path).suffix == '.txt': # *.txt file with img/vid/dir on each line
|
||||
path = Path(path).read_text().rsplit()
|
||||
@ -198,13 +176,10 @@ class LoadImages:
|
||||
ni, nv = len(images), len(videos)
|
||||
|
||||
self.imgsz = imgsz
|
||||
self.stride = stride
|
||||
self.files = images + videos
|
||||
self.nf = ni + nv # number of files
|
||||
self.video_flag = [False] * ni + [True] * nv
|
||||
self.mode = 'image'
|
||||
self.auto = auto
|
||||
self.transforms = transforms # optional
|
||||
self.vid_stride = vid_stride # video frame-rate stride
|
||||
self.bs = 1
|
||||
if any(videos):
|
||||
@ -254,14 +229,7 @@ class LoadImages:
|
||||
raise FileNotFoundError(f'Image Not Found {path}')
|
||||
s = f'image {self.count}/{self.nf} {path}: '
|
||||
|
||||
if self.transforms:
|
||||
im = self.transforms(im0) # transforms
|
||||
else:
|
||||
im = LetterBox(self.imgsz, self.auto, stride=self.stride)(image=im0)
|
||||
im = im.transpose((2, 0, 1))[::-1] # HWC to CHW, BGR to RGB
|
||||
im = np.ascontiguousarray(im) # contiguous
|
||||
|
||||
return path, im, im0, self.cap, s
|
||||
return [path], [im0], self.cap, s
|
||||
|
||||
def _new_video(self, path):
|
||||
"""Create a new video capture object."""
|
||||
@ -290,16 +258,13 @@ class LoadImages:
|
||||
|
||||
class LoadPilAndNumpy:
|
||||
|
||||
def __init__(self, im0, imgsz=640, stride=32, auto=True, transforms=None):
|
||||
def __init__(self, im0, imgsz=640):
|
||||
"""Initialize PIL and Numpy Dataloader."""
|
||||
if not isinstance(im0, list):
|
||||
im0 = [im0]
|
||||
self.paths = [getattr(im, 'filename', f'image{i}.jpg') for i, im in enumerate(im0)]
|
||||
self.im0 = [self._single_check(im) for im in im0]
|
||||
self.imgsz = imgsz
|
||||
self.stride = stride
|
||||
self.auto = auto
|
||||
self.transforms = transforms
|
||||
self.mode = 'image'
|
||||
# Generate fake paths
|
||||
self.bs = len(self.im0)
|
||||
@ -315,16 +280,6 @@ class LoadPilAndNumpy:
|
||||
im = np.ascontiguousarray(im) # contiguous
|
||||
return im
|
||||
|
||||
def _single_preprocess(self, im, auto):
|
||||
"""Preprocesses a single image for inference."""
|
||||
if self.transforms:
|
||||
im = self.transforms(im) # transforms
|
||||
else:
|
||||
im = LetterBox(self.imgsz, auto=auto, stride=self.stride)(image=im)
|
||||
im = im.transpose((2, 0, 1))[::-1] # HWC to CHW, BGR to RGB
|
||||
im = np.ascontiguousarray(im) # contiguous
|
||||
return im
|
||||
|
||||
def __len__(self):
|
||||
"""Returns the length of the 'im0' attribute."""
|
||||
return len(self.im0)
|
||||
@ -333,11 +288,8 @@ class LoadPilAndNumpy:
|
||||
"""Returns batch paths, images, processed images, None, ''."""
|
||||
if self.count == 1: # loop only once as it's batch inference
|
||||
raise StopIteration
|
||||
auto = all(x.shape == self.im0[0].shape for x in self.im0) and self.auto
|
||||
im = [self._single_preprocess(im, auto) for im in self.im0]
|
||||
im = np.stack(im, 0) if len(im) > 1 else im[0][None]
|
||||
self.count += 1
|
||||
return self.paths, im, self.im0, None, ''
|
||||
return self.paths, self.im0, None, ''
|
||||
|
||||
def __iter__(self):
|
||||
"""Enables iteration for class LoadPilAndNumpy."""
|
||||
@ -362,7 +314,7 @@ class LoadTensor:
|
||||
if self.count == 1:
|
||||
raise StopIteration
|
||||
self.count += 1
|
||||
return None, self.im0, self.im0, None, '' # self.paths, im, self.im0, None, ''
|
||||
return None, self.im0, None, '' # self.paths, im, self.im0, None, ''
|
||||
|
||||
def __len__(self):
|
||||
"""Returns the batch size."""
|
||||
|
@ -21,21 +21,9 @@ class YOLODataset(BaseDataset):
|
||||
Dataset class for loading object detection and/or segmentation labels in YOLO format.
|
||||
|
||||
Args:
|
||||
img_path (str): Path to the folder containing images.
|
||||
imgsz (int, optional): Image size. Defaults to 640.
|
||||
cache (bool, optional): Cache images to RAM or disk during training. Defaults to False.
|
||||
augment (bool, optional): If True, data augmentation is applied. Defaults to True.
|
||||
hyp (dict, optional): Hyperparameters to apply data augmentation. Defaults to None.
|
||||
prefix (str, optional): Prefix to print in log messages. Defaults to ''.
|
||||
rect (bool, optional): If True, rectangular training is used. Defaults to False.
|
||||
batch_size (int, optional): Size of batches. Defaults to None.
|
||||
stride (int, optional): Stride. Defaults to 32.
|
||||
pad (float, optional): Padding. Defaults to 0.0.
|
||||
single_cls (bool, optional): If True, single class training is used. Defaults to False.
|
||||
data (dict, optional): A dataset YAML dictionary. Defaults to None.
|
||||
use_segments (bool, optional): If True, segmentation masks are used as labels. Defaults to False.
|
||||
use_keypoints (bool, optional): If True, keypoints are used as labels. Defaults to False.
|
||||
data (dict, optional): A dataset YAML dictionary. Defaults to None.
|
||||
classes (list): List of included classes. Default is None.
|
||||
|
||||
Returns:
|
||||
(torch.utils.data.Dataset): A PyTorch dataset object that can be used for training an object detection model.
|
||||
@ -43,28 +31,12 @@ class YOLODataset(BaseDataset):
|
||||
cache_version = '1.0.2' # dataset labels *.cache version, >= 1.0.0 for YOLOv8
|
||||
rand_interp_methods = [cv2.INTER_NEAREST, cv2.INTER_LINEAR, cv2.INTER_CUBIC, cv2.INTER_AREA, cv2.INTER_LANCZOS4]
|
||||
|
||||
def __init__(self,
|
||||
img_path,
|
||||
imgsz=640,
|
||||
cache=False,
|
||||
augment=True,
|
||||
hyp=None,
|
||||
prefix='',
|
||||
rect=False,
|
||||
batch_size=None,
|
||||
stride=32,
|
||||
pad=0.0,
|
||||
single_cls=False,
|
||||
use_segments=False,
|
||||
use_keypoints=False,
|
||||
data=None,
|
||||
classes=None):
|
||||
def __init__(self, *args, data=None, use_segments=False, use_keypoints=False, **kwargs):
|
||||
self.use_segments = use_segments
|
||||
self.use_keypoints = use_keypoints
|
||||
self.data = data
|
||||
assert not (self.use_segments and self.use_keypoints), 'Can not use both segments and keypoints.'
|
||||
super().__init__(img_path, imgsz, cache, augment, hyp, prefix, rect, batch_size, stride, pad, single_cls,
|
||||
classes)
|
||||
super().__init__(*args, **kwargs)
|
||||
|
||||
def cache_labels(self, path=Path('./labels.cache')):
|
||||
"""Cache dataset labels, check images and read shapes.
|
||||
|
@ -453,7 +453,7 @@ class YOLO:
|
||||
reduction_factor=3)
|
||||
|
||||
# Define the callbacks for the hyperparameter search
|
||||
tuner_callbacks = [WandbLoggerCallback(project='yolov8_tune') if wandb else None]
|
||||
tuner_callbacks = [WandbLoggerCallback(project='yolov8_tune')] if wandb else []
|
||||
|
||||
# Create the Ray Tune hyperparameter search tuner
|
||||
tuner = tune.Tuner(trainable_with_resources,
|
||||
|
@ -31,11 +31,13 @@ import platform
|
||||
from pathlib import Path
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
from ultralytics.nn.autobackend import AutoBackend
|
||||
from ultralytics.yolo.cfg import get_cfg
|
||||
from ultralytics.yolo.data import load_inference_source
|
||||
from ultralytics.yolo.data.augment import classify_transforms
|
||||
from ultralytics.yolo.data.augment import LetterBox, classify_transforms
|
||||
from ultralytics.yolo.utils import DEFAULT_CFG, LOGGER, SETTINGS, callbacks, colorstr, ops
|
||||
from ultralytics.yolo.utils.checks import check_imgsz, check_imshow
|
||||
from ultralytics.yolo.utils.files import increment_path
|
||||
@ -106,9 +108,23 @@ class BasePredictor:
|
||||
self.callbacks = _callbacks or callbacks.get_default_callbacks()
|
||||
callbacks.add_integration_callbacks(self)
|
||||
|
||||
def preprocess(self, img):
|
||||
"""Prepares input image before inference."""
|
||||
pass
|
||||
def preprocess(self, im):
|
||||
"""Prepares input image before inference.
|
||||
|
||||
Args:
|
||||
im (torch.Tensor | List(np.ndarray)): (N, 3, h, w) for tensor, [(h, w, 3) x N] for list.
|
||||
"""
|
||||
if not isinstance(im, torch.Tensor):
|
||||
auto = all(x.shape == im[0].shape for x in im) and self.model.pt
|
||||
im = np.stack([LetterBox(self.imgsz, auto=auto, stride=self.model.stride)(image=x) for x in im])
|
||||
im = im[..., ::-1].transpose((0, 3, 1, 2)) # BGR to RGB, BHWC to BCHW, (n, 3, h, w)
|
||||
im = np.ascontiguousarray(im) # contiguous
|
||||
im = torch.from_numpy(im)
|
||||
# NOTE: assuming im with (b, 3, h, w) if it's a tensor
|
||||
img = im.to(self.device)
|
||||
img = img.half() if self.model.fp16 else img.float() # uint8 to fp16/32
|
||||
img /= 255 # 0 - 255 to 0.0 - 1.0
|
||||
return img
|
||||
|
||||
def write_results(self, idx, results, batch):
|
||||
"""Write inference results to a file or directory."""
|
||||
@ -165,16 +181,9 @@ class BasePredictor:
|
||||
def setup_source(self, source):
|
||||
"""Sets up source and inference mode."""
|
||||
self.imgsz = check_imgsz(self.args.imgsz, stride=self.model.stride, min_dim=2) # check image size
|
||||
if self.args.task == 'classify':
|
||||
transforms = getattr(self.model.model, 'transforms', classify_transforms(self.imgsz[0]))
|
||||
else: # predict, segment
|
||||
transforms = None
|
||||
self.dataset = load_inference_source(source=source,
|
||||
transforms=transforms,
|
||||
imgsz=self.imgsz,
|
||||
vid_stride=self.args.vid_stride,
|
||||
stride=self.model.stride,
|
||||
auto=self.model.pt)
|
||||
self.transforms = getattr(self.model.model, 'transforms', classify_transforms(
|
||||
self.imgsz[0])) if self.args.task == 'classify' else None
|
||||
self.dataset = load_inference_source(source=source, imgsz=self.imgsz, vid_stride=self.args.vid_stride)
|
||||
self.source_type = self.dataset.source_type
|
||||
if not getattr(self, 'stream', True) and (self.dataset.mode == 'stream' or # streams
|
||||
len(self.dataset) > 1000 or # images
|
||||
@ -207,14 +216,12 @@ class BasePredictor:
|
||||
for batch in self.dataset:
|
||||
self.run_callbacks('on_predict_batch_start')
|
||||
self.batch = batch
|
||||
path, im, im0s, vid_cap, s = batch
|
||||
path, im0s, vid_cap, s = batch
|
||||
visualize = increment_path(self.save_dir / Path(path).stem, mkdir=True) if self.args.visualize else False
|
||||
|
||||
# Preprocess
|
||||
with self.dt[0]:
|
||||
im = self.preprocess(im)
|
||||
if len(im.shape) == 3:
|
||||
im = im[None] # expand for batch dim
|
||||
im = self.preprocess(im0s)
|
||||
|
||||
# Inference
|
||||
with self.dt[1]:
|
||||
@ -226,7 +233,7 @@ class BasePredictor:
|
||||
self.run_callbacks('on_predict_postprocess_end')
|
||||
|
||||
# Visualize, save, write results
|
||||
n = len(im)
|
||||
n = len(im0s)
|
||||
for i in range(n):
|
||||
self.results[i].speed = {
|
||||
'preprocess': self.dt[0].dt * 1E3 / n,
|
||||
@ -234,8 +241,7 @@ class BasePredictor:
|
||||
'postprocess': self.dt[2].dt * 1E3 / n}
|
||||
if self.source_type.tensor: # skip write, show and plot operations if input is raw tensor
|
||||
continue
|
||||
p, im0 = (path[i], im0s[i].copy()) if self.source_type.webcam or self.source_type.from_img \
|
||||
else (path, im0s.copy())
|
||||
p, im0 = path[i], im0s[i].copy()
|
||||
p = Path(p)
|
||||
|
||||
if self.args.verbose or self.args.save or self.args.save_txt or self.args.show:
|
||||
|
@ -213,7 +213,8 @@ class Results(SimpleClass):
|
||||
img = LetterBox(pred_masks.shape[1:])(image=annotator.result())
|
||||
img_gpu = torch.as_tensor(img, dtype=torch.float16, device=pred_masks.data.device).permute(
|
||||
2, 0, 1).flip(0).contiguous() / 255
|
||||
annotator.masks(pred_masks.data, colors=[colors(x, True) for x in pred_boxes.cls], im_gpu=img_gpu)
|
||||
idx = pred_boxes.cls if pred_boxes else range(len(pred_masks))
|
||||
annotator.masks(pred_masks.data, colors=[colors(x, True) for x in idx], im_gpu=img_gpu)
|
||||
|
||||
if pred_boxes and show_boxes:
|
||||
for d in reversed(pred_boxes):
|
||||
|
@ -481,6 +481,10 @@ class BaseTrainer:
|
||||
"""
|
||||
raise NotImplementedError('get_dataloader function not implemented in trainer')
|
||||
|
||||
def build_dataset(self, img_path, mode='train', batch=None):
|
||||
"""Build dataset"""
|
||||
raise NotImplementedError('build_dataset function not implemented in trainer')
|
||||
|
||||
def criterion(self, preds, batch):
|
||||
"""
|
||||
Returns loss and individual loss items as Tensor.
|
||||
|
@ -207,6 +207,10 @@ class BaseValidator:
|
||||
"""Get data loader from dataset path and batch size."""
|
||||
raise NotImplementedError('get_dataloader function not implemented for this validator')
|
||||
|
||||
def build_dataset(self, img_path):
|
||||
"""Build dataset"""
|
||||
raise NotImplementedError('build_dataset function not implemented in validator')
|
||||
|
||||
def preprocess(self, batch):
|
||||
"""Preprocesses an input batch."""
|
||||
return batch
|
||||
|
@ -13,20 +13,8 @@ try:
|
||||
except (ImportError, AssertionError):
|
||||
comet_ml = None
|
||||
|
||||
COMET_MODE = os.getenv('COMET_MODE', 'online')
|
||||
COMET_MODEL_NAME = os.getenv('COMET_MODEL_NAME', 'YOLOv8')
|
||||
# Determines how many batches of image predictions to log from the validation set
|
||||
COMET_EVAL_BATCH_LOGGING_INTERVAL = int(os.getenv('COMET_EVAL_BATCH_LOGGING_INTERVAL', 1))
|
||||
# Determines whether to log confusion matrix every evaluation epoch
|
||||
COMET_EVAL_LOG_CONFUSION_MATRIX = (os.getenv('COMET_EVAL_LOG_CONFUSION_MATRIX', 'true').lower() == 'true')
|
||||
# Determines whether to log image predictions every evaluation epoch
|
||||
COMET_EVAL_LOG_IMAGE_PREDICTIONS = (os.getenv('COMET_EVAL_LOG_IMAGE_PREDICTIONS', 'true').lower() == 'true')
|
||||
COMET_MAX_IMAGE_PREDICTIONS = int(os.getenv('COMET_MAX_IMAGE_PREDICTIONS', 100))
|
||||
|
||||
# Ensures certain logging functions only run for supported tasks
|
||||
COMET_SUPPORTED_TASKS = ['detect']
|
||||
# Scales reported confidence scores (0.0-1.0) by this value
|
||||
COMET_MAX_CONFIDENCE_SCORE = int(os.getenv('COMET_MAX_CONFIDENCE_SCORE', 100))
|
||||
|
||||
# Names of plots created by YOLOv8 that are logged to Comet
|
||||
EVALUATION_PLOT_NAMES = 'F1_curve', 'P_curve', 'R_curve', 'PR_curve', 'confusion_matrix'
|
||||
@ -35,6 +23,35 @@ LABEL_PLOT_NAMES = 'labels', 'labels_correlogram'
|
||||
_comet_image_prediction_count = 0
|
||||
|
||||
|
||||
def _get_comet_mode():
|
||||
return os.getenv('COMET_MODE', 'online')
|
||||
|
||||
|
||||
def _get_comet_model_name():
|
||||
return os.getenv('COMET_MODEL_NAME', 'YOLOv8')
|
||||
|
||||
|
||||
def _get_eval_batch_logging_interval():
|
||||
return int(os.getenv('COMET_EVAL_BATCH_LOGGING_INTERVAL', 1))
|
||||
|
||||
|
||||
def _get_max_image_predictions_to_log():
|
||||
return int(os.getenv('COMET_MAX_IMAGE_PREDICTIONS', 100))
|
||||
|
||||
|
||||
def _scale_confidence_score(score):
|
||||
scale = float(os.getenv('COMET_MAX_CONFIDENCE_SCORE', 100.0))
|
||||
return score * scale
|
||||
|
||||
|
||||
def _should_log_confusion_matrix():
|
||||
return os.getenv('COMET_EVAL_LOG_CONFUSION_MATRIX', 'true').lower() == 'true'
|
||||
|
||||
|
||||
def _should_log_image_predictions():
|
||||
return os.getenv('COMET_EVAL_LOG_IMAGE_PREDICTIONS', 'true').lower() == 'true'
|
||||
|
||||
|
||||
def _get_experiment_type(mode, project_name):
|
||||
"""Return an experiment based on mode and project name."""
|
||||
if mode == 'offline':
|
||||
@ -48,13 +65,14 @@ def _create_experiment(args):
|
||||
if RANK not in (-1, 0):
|
||||
return
|
||||
try:
|
||||
experiment = _get_experiment_type(COMET_MODE, args.project)
|
||||
comet_mode = _get_comet_mode()
|
||||
experiment = _get_experiment_type(comet_mode, args.project)
|
||||
experiment.log_parameters(vars(args))
|
||||
experiment.log_others({
|
||||
'eval_batch_logging_interval': COMET_EVAL_BATCH_LOGGING_INTERVAL,
|
||||
'log_confusion_matrix': COMET_EVAL_LOG_CONFUSION_MATRIX,
|
||||
'log_image_predictions': COMET_EVAL_LOG_IMAGE_PREDICTIONS,
|
||||
'max_image_predictions': COMET_MAX_IMAGE_PREDICTIONS, })
|
||||
'eval_batch_logging_interval': _get_eval_batch_logging_interval(),
|
||||
'log_confusion_matrix': _should_log_confusion_matrix(),
|
||||
'log_image_predictions': _should_log_image_predictions(),
|
||||
'max_image_predictions': _get_max_image_predictions_to_log(), })
|
||||
experiment.log_other('Created from', 'yolov8')
|
||||
|
||||
except Exception as e:
|
||||
@ -74,7 +92,12 @@ def _fetch_trainer_metadata(trainer):
|
||||
save_interval = curr_epoch % save_period == 0
|
||||
save_assets = save and save_period > 0 and save_interval and not final_epoch
|
||||
|
||||
return dict(curr_epoch=curr_epoch, curr_step=curr_step, save_assets=save_assets, final_epoch=final_epoch)
|
||||
return dict(
|
||||
curr_epoch=curr_epoch,
|
||||
curr_step=curr_step,
|
||||
save_assets=save_assets,
|
||||
final_epoch=final_epoch,
|
||||
)
|
||||
|
||||
|
||||
def _scale_bounding_box_to_original_image_shape(box, resized_image_shape, original_image_shape, ratio_pad):
|
||||
@ -117,7 +140,10 @@ def _format_ground_truth_annotations_for_detection(img_idx, image_path, batch, c
|
||||
data = []
|
||||
for box, label in zip(bboxes, cls_labels):
|
||||
box = _scale_bounding_box_to_original_image_shape(box, resized_image_shape, original_image_shape, ratio_pad)
|
||||
data.append({'boxes': [box], 'label': f'gt_{label}', 'score': COMET_MAX_CONFIDENCE_SCORE})
|
||||
data.append({
|
||||
'boxes': [box],
|
||||
'label': f'gt_{label}',
|
||||
'score': _scale_confidence_score(1.0), })
|
||||
|
||||
return {'name': 'ground_truth', 'data': data}
|
||||
|
||||
@ -135,7 +161,7 @@ def _format_prediction_annotations_for_detection(image_path, metadata, class_lab
|
||||
data = []
|
||||
for prediction in predictions:
|
||||
boxes = prediction['bbox']
|
||||
score = prediction['score'] * COMET_MAX_CONFIDENCE_SCORE
|
||||
score = _scale_confidence_score(prediction['score'])
|
||||
cls_label = prediction['category_id']
|
||||
if class_label_map:
|
||||
cls_label = str(class_label_map[cls_label])
|
||||
@ -207,13 +233,16 @@ def _log_image_predictions(experiment, validator, curr_step):
|
||||
dataloader = validator.dataloader
|
||||
class_label_map = validator.names
|
||||
|
||||
batch_logging_interval = _get_eval_batch_logging_interval()
|
||||
max_image_predictions = _get_max_image_predictions_to_log()
|
||||
|
||||
for batch_idx, batch in enumerate(dataloader):
|
||||
if (batch_idx + 1) % COMET_EVAL_BATCH_LOGGING_INTERVAL != 0:
|
||||
if (batch_idx + 1) % batch_logging_interval != 0:
|
||||
continue
|
||||
|
||||
image_paths = batch['im_file']
|
||||
for img_idx, image_path in enumerate(image_paths):
|
||||
if _comet_image_prediction_count >= COMET_MAX_IMAGE_PREDICTIONS:
|
||||
if _comet_image_prediction_count >= max_image_predictions:
|
||||
return
|
||||
|
||||
image_path = Path(image_path)
|
||||
@ -244,8 +273,9 @@ def _log_plots(experiment, trainer):
|
||||
|
||||
def _log_model(experiment, trainer):
|
||||
"""Log the best-trained model to Comet.ml."""
|
||||
model_name = _get_comet_model_name()
|
||||
experiment.log_model(
|
||||
COMET_MODEL_NAME,
|
||||
model_name,
|
||||
file_or_folder=str(trainer.best),
|
||||
file_name='best.pt',
|
||||
overwrite=True,
|
||||
@ -255,7 +285,8 @@ def _log_model(experiment, trainer):
|
||||
def on_pretrain_routine_start(trainer):
|
||||
"""Creates or resumes a CometML experiment at the start of a YOLO pre-training routine."""
|
||||
experiment = comet_ml.get_global_experiment()
|
||||
if not experiment:
|
||||
is_alive = getattr(experiment, 'alive', False)
|
||||
if not experiment or not is_alive:
|
||||
_create_experiment(trainer.args)
|
||||
|
||||
|
||||
@ -296,16 +327,16 @@ def on_fit_epoch_end(trainer):
|
||||
model_info = {
|
||||
'model/parameters': get_num_params(trainer.model),
|
||||
'model/GFLOPs': round(get_flops(trainer.model), 3),
|
||||
'model/speed(ms)': round(trainer.validator.speed['inference'], 3)}
|
||||
'model/speed(ms)': round(trainer.validator.speed['inference'], 3), }
|
||||
experiment.log_metrics(model_info, step=curr_step, epoch=curr_epoch)
|
||||
|
||||
if not save_assets:
|
||||
return
|
||||
|
||||
_log_model(experiment, trainer)
|
||||
if COMET_EVAL_LOG_CONFUSION_MATRIX:
|
||||
if _should_log_confusion_matrix():
|
||||
_log_confusion_matrix(experiment, trainer, curr_step, curr_epoch)
|
||||
if COMET_EVAL_LOG_IMAGE_PREDICTIONS:
|
||||
if _should_log_image_predictions():
|
||||
_log_image_predictions(experiment, trainer.validator, curr_step)
|
||||
|
||||
|
||||
|
@ -17,7 +17,8 @@ from ultralytics.yolo.utils import LOGGER, checks, clean_url, emojis, is_online,
|
||||
|
||||
GITHUB_ASSET_NAMES = [f'yolov8{k}{suffix}.pt' for k in 'nsmlx' for suffix in ('', '6', '-cls', '-seg', '-pose')] + \
|
||||
[f'yolov5{k}u.pt' for k in 'nsmlx'] + \
|
||||
[f'yolov3{k}u.pt' for k in ('', '-spp', '-tiny')]
|
||||
[f'yolov3{k}u.pt' for k in ('', '-spp', '-tiny')] + \
|
||||
[f'sam_{k}.pt' for k in 'bl']
|
||||
GITHUB_ASSET_STEMS = [Path(k).stem for k in GITHUB_ASSET_NAMES]
|
||||
|
||||
|
||||
|
@ -192,14 +192,27 @@ class Annotator:
|
||||
"""Add rectangle to image (PIL-only)."""
|
||||
self.draw.rectangle(xy, fill, outline, width)
|
||||
|
||||
def text(self, xy, text, txt_color=(255, 255, 255), anchor='top'):
|
||||
def text(self, xy, text, txt_color=(255, 255, 255), anchor='top', box_style=False):
|
||||
"""Adds text to an image using PIL or cv2."""
|
||||
if anchor == 'bottom': # start y from font bottom
|
||||
w, h = self.font.getsize(text) # text width, height
|
||||
xy[1] += 1 - h
|
||||
if self.pil:
|
||||
if box_style:
|
||||
w, h = self.font.getsize(text)
|
||||
self.draw.rectangle((xy[0], xy[1], xy[0] + w + 1, xy[1] + h + 1), fill=txt_color)
|
||||
# Using `txt_color` for background and draw fg with white color
|
||||
txt_color = (255, 255, 255)
|
||||
self.draw.text(xy, text, fill=txt_color, font=self.font)
|
||||
else:
|
||||
if box_style:
|
||||
tf = max(self.lw - 1, 1) # font thickness
|
||||
w, h = cv2.getTextSize(text, 0, fontScale=self.lw / 3, thickness=tf)[0] # text width, height
|
||||
outside = xy[1] - h >= 3
|
||||
p2 = xy[0] + w, xy[1] - h - 3 if outside else xy[1] + h + 3
|
||||
cv2.rectangle(self.im, xy, p2, txt_color, -1, cv2.LINE_AA) # filled
|
||||
# Using `txt_color` for background and draw fg with white color
|
||||
txt_color = (255, 255, 255)
|
||||
tf = max(self.lw - 1, 1) # font thickness
|
||||
cv2.putText(self.im, text, xy, 0, self.lw / 3, txt_color, thickness=tf, lineType=cv2.LINE_AA)
|
||||
|
||||
@ -283,7 +296,7 @@ def save_one_box(xyxy, im, file=Path('im.jpg'), gain=1.02, pad=10, square=False,
|
||||
def plot_images(images,
|
||||
batch_idx,
|
||||
cls,
|
||||
bboxes,
|
||||
bboxes=np.zeros(0, dtype=np.float32),
|
||||
masks=np.zeros(0, dtype=np.uint8),
|
||||
kpts=np.zeros((0, 51), dtype=np.float32),
|
||||
paths=None,
|
||||
@ -337,27 +350,33 @@ def plot_images(images,
|
||||
annotator.text((x + 5, y + 5), text=Path(paths[i]).name[:40], txt_color=(220, 220, 220)) # filenames
|
||||
if len(cls) > 0:
|
||||
idx = batch_idx == i
|
||||
|
||||
boxes = xywh2xyxy(bboxes[idx, :4]).T
|
||||
classes = cls[idx].astype('int')
|
||||
labels = bboxes.shape[1] == 4 # labels if no conf column
|
||||
conf = None if labels else bboxes[idx, 4] # check for confidence presence (label vs pred)
|
||||
|
||||
if boxes.shape[1]:
|
||||
if boxes.max() <= 1.01: # if normalized with tolerance 0.01
|
||||
boxes[[0, 2]] *= w # scale to pixels
|
||||
boxes[[1, 3]] *= h
|
||||
elif scale < 1: # absolute coords need scale if image scales
|
||||
boxes *= scale
|
||||
boxes[[0, 2]] += x
|
||||
boxes[[1, 3]] += y
|
||||
for j, box in enumerate(boxes.T.tolist()):
|
||||
c = classes[j]
|
||||
color = colors(c)
|
||||
c = names.get(c, c) if names else c
|
||||
if labels or conf[j] > 0.25: # 0.25 conf thresh
|
||||
label = f'{c}' if labels else f'{c} {conf[j]:.1f}'
|
||||
annotator.box_label(box, label, color=color)
|
||||
if len(bboxes):
|
||||
boxes = xywh2xyxy(bboxes[idx, :4]).T
|
||||
labels = bboxes.shape[1] == 4 # labels if no conf column
|
||||
conf = None if labels else bboxes[idx, 4] # check for confidence presence (label vs pred)
|
||||
|
||||
if boxes.shape[1]:
|
||||
if boxes.max() <= 1.01: # if normalized with tolerance 0.01
|
||||
boxes[[0, 2]] *= w # scale to pixels
|
||||
boxes[[1, 3]] *= h
|
||||
elif scale < 1: # absolute coords need scale if image scales
|
||||
boxes *= scale
|
||||
boxes[[0, 2]] += x
|
||||
boxes[[1, 3]] += y
|
||||
for j, box in enumerate(boxes.T.tolist()):
|
||||
c = classes[j]
|
||||
color = colors(c)
|
||||
c = names.get(c, c) if names else c
|
||||
if labels or conf[j] > 0.25: # 0.25 conf thresh
|
||||
label = f'{c}' if labels else f'{c} {conf[j]:.1f}'
|
||||
annotator.box_label(box, label, color=color)
|
||||
elif len(classes):
|
||||
for c in classes:
|
||||
color = colors(c)
|
||||
c = names.get(c, c) if names else c
|
||||
annotator.text((x, y), f'{c}', txt_color=color, box_style=True)
|
||||
|
||||
# Plot keypoints
|
||||
if len(kpts):
|
||||
@ -403,11 +422,14 @@ def plot_images(images,
|
||||
|
||||
|
||||
@plt_settings()
|
||||
def plot_results(file='path/to/results.csv', dir='', segment=False, pose=False):
|
||||
def plot_results(file='path/to/results.csv', dir='', segment=False, pose=False, classify=False):
|
||||
"""Plot training results.csv. Usage: from utils.plots import *; plot_results('path/to/results.csv')."""
|
||||
import pandas as pd
|
||||
save_dir = Path(file).parent if file else Path(dir)
|
||||
if segment:
|
||||
if classify:
|
||||
fig, ax = plt.subplots(2, 2, figsize=(6, 6), tight_layout=True)
|
||||
index = [1, 4, 2, 3]
|
||||
elif segment:
|
||||
fig, ax = plt.subplots(2, 8, figsize=(18, 6), tight_layout=True)
|
||||
index = [1, 2, 3, 4, 5, 6, 9, 10, 13, 14, 15, 16, 7, 8, 11, 12]
|
||||
elif pose:
|
||||
|
@ -225,7 +225,7 @@ class TaskAlignedAssigner(nn.Module):
|
||||
target_bboxes = gt_bboxes.view(-1, 4)[target_gt_idx]
|
||||
|
||||
# Assigned target scores
|
||||
target_labels.clamp(0)
|
||||
target_labels.clamp_(0)
|
||||
target_scores = F.one_hot(target_labels, self.num_classes) # (b, h*w, 80)
|
||||
fg_scores_mask = fg_mask[:, :, None].repeat(1, 1, self.num_classes) # (b, h*w, 80)
|
||||
target_scores = torch.where(fg_scores_mask > 0, target_scores, 0)
|
||||
|
@ -9,8 +9,14 @@ from ultralytics.yolo.utils import DEFAULT_CFG, ROOT
|
||||
|
||||
class ClassificationPredictor(BasePredictor):
|
||||
|
||||
def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None):
|
||||
super().__init__(cfg, overrides, _callbacks)
|
||||
self.args.task = 'classify'
|
||||
|
||||
def preprocess(self, img):
|
||||
"""Converts input image to model-compatible data type."""
|
||||
if not isinstance(img, torch.Tensor):
|
||||
img = torch.stack([self.transforms(im) for im in img], dim=0)
|
||||
img = (img if isinstance(img, torch.Tensor) else torch.from_numpy(img)).to(self.model.device)
|
||||
return img.half() if self.model.fp16 else img.float() # uint8 to fp16/32
|
||||
|
||||
@ -19,7 +25,7 @@ class ClassificationPredictor(BasePredictor):
|
||||
results = []
|
||||
for i, pred in enumerate(preds):
|
||||
orig_img = orig_imgs[i] if isinstance(orig_imgs, list) else orig_imgs
|
||||
path, _, _, _, _ = self.batch
|
||||
path = self.batch[0]
|
||||
img_path = path[i] if isinstance(path, list) else path
|
||||
results.append(Results(orig_img=orig_img, path=img_path, names=self.model.names, probs=pred))
|
||||
|
||||
|
@ -5,10 +5,11 @@ import torchvision
|
||||
|
||||
from ultralytics.nn.tasks import ClassificationModel, attempt_load_one_weight
|
||||
from ultralytics.yolo import v8
|
||||
from ultralytics.yolo.data import build_classification_dataloader
|
||||
from ultralytics.yolo.data import ClassificationDataset, build_dataloader
|
||||
from ultralytics.yolo.engine.trainer import BaseTrainer
|
||||
from ultralytics.yolo.utils import DEFAULT_CFG, LOGGER, RANK, colorstr
|
||||
from ultralytics.yolo.utils.torch_utils import is_parallel, strip_optimizer
|
||||
from ultralytics.yolo.utils.plotting import plot_images, plot_results
|
||||
from ultralytics.yolo.utils.torch_utils import is_parallel, strip_optimizer, torch_distributed_zero_first
|
||||
|
||||
|
||||
class ClassificationTrainer(BaseTrainer):
|
||||
@ -71,14 +72,16 @@ class ClassificationTrainer(BaseTrainer):
|
||||
|
||||
return # dont return ckpt. Classification doesn't support resume
|
||||
|
||||
def build_dataset(self, img_path, mode='train'):
|
||||
dataset = ClassificationDataset(root=img_path, imgsz=self.args.imgsz, augment=mode == 'train')
|
||||
return dataset
|
||||
|
||||
def get_dataloader(self, dataset_path, batch_size=16, rank=0, mode='train'):
|
||||
"""Returns PyTorch DataLoader with transforms to preprocess images for inference."""
|
||||
loader = build_classification_dataloader(path=dataset_path,
|
||||
imgsz=self.args.imgsz,
|
||||
batch_size=batch_size if mode == 'train' else (batch_size * 2),
|
||||
augment=mode == 'train',
|
||||
rank=rank,
|
||||
workers=self.args.workers)
|
||||
with torch_distributed_zero_first(rank): # init dataset *.cache only once if DDP
|
||||
dataset = self.build_dataset(dataset_path, mode)
|
||||
|
||||
loader = build_dataloader(dataset, batch_size, self.args.workers, rank=rank)
|
||||
# Attach inference transforms
|
||||
if mode != 'train':
|
||||
if is_parallel(self.model):
|
||||
@ -124,6 +127,10 @@ class ClassificationTrainer(BaseTrainer):
|
||||
"""Resumes training from a given checkpoint."""
|
||||
pass
|
||||
|
||||
def plot_metrics(self):
|
||||
"""Plots metrics from a CSV file."""
|
||||
plot_results(file=self.csv, classify=True) # save results.png
|
||||
|
||||
def final_eval(self):
|
||||
"""Evaluate trained model and save validation results."""
|
||||
for f in self.last, self.best:
|
||||
@ -138,6 +145,13 @@ class ClassificationTrainer(BaseTrainer):
|
||||
# self.run_callbacks('on_fit_epoch_end')
|
||||
LOGGER.info(f"Results saved to {colorstr('bold', self.save_dir)}")
|
||||
|
||||
def plot_training_samples(self, batch, ni):
|
||||
"""Plots training samples with their annotations."""
|
||||
plot_images(images=batch['img'],
|
||||
batch_idx=torch.arange(len(batch['img'])),
|
||||
cls=batch['cls'].squeeze(-1),
|
||||
fname=self.save_dir / f'train_batch{ni}.jpg')
|
||||
|
||||
|
||||
def train(cfg=DEFAULT_CFG, use_python=False):
|
||||
"""Train the YOLO classification model."""
|
||||
|
@ -1,9 +1,12 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
|
||||
from ultralytics.yolo.data import build_classification_dataloader
|
||||
import torch
|
||||
|
||||
from ultralytics.yolo.data import ClassificationDataset, build_dataloader
|
||||
from ultralytics.yolo.engine.validator import BaseValidator
|
||||
from ultralytics.yolo.utils import DEFAULT_CFG, LOGGER
|
||||
from ultralytics.yolo.utils.metrics import ClassifyMetrics, ConfusionMatrix
|
||||
from ultralytics.yolo.utils.plotting import plot_images
|
||||
|
||||
|
||||
class ClassificationValidator(BaseValidator):
|
||||
@ -52,20 +55,36 @@ class ClassificationValidator(BaseValidator):
|
||||
self.metrics.process(self.targets, self.pred)
|
||||
return self.metrics.results_dict
|
||||
|
||||
def build_dataset(self, img_path):
|
||||
dataset = ClassificationDataset(root=img_path, imgsz=self.args.imgsz, augment=False)
|
||||
return dataset
|
||||
|
||||
def get_dataloader(self, dataset_path, batch_size):
|
||||
"""Builds and returns a data loader for classification tasks with given parameters."""
|
||||
return build_classification_dataloader(path=dataset_path,
|
||||
imgsz=self.args.imgsz,
|
||||
batch_size=batch_size,
|
||||
augment=False,
|
||||
shuffle=False,
|
||||
workers=self.args.workers)
|
||||
dataset = self.build_dataset(dataset_path)
|
||||
return build_dataloader(dataset, batch_size, self.args.workers, rank=-1)
|
||||
|
||||
def print_results(self):
|
||||
"""Prints evaluation metrics for YOLO object detection model."""
|
||||
pf = '%22s' + '%11.3g' * len(self.metrics.keys) # print format
|
||||
LOGGER.info(pf % ('all', self.metrics.top1, self.metrics.top5))
|
||||
|
||||
def plot_val_samples(self, batch, ni):
|
||||
"""Plot validation image samples."""
|
||||
plot_images(images=batch['img'],
|
||||
batch_idx=torch.arange(len(batch['img'])),
|
||||
cls=batch['cls'].squeeze(-1),
|
||||
fname=self.save_dir / f'val_batch{ni}_labels.jpg',
|
||||
names=self.names)
|
||||
|
||||
def plot_predictions(self, batch, preds, ni):
|
||||
"""Plots predicted bounding boxes on input images and saves the result."""
|
||||
plot_images(batch['img'],
|
||||
batch_idx=torch.arange(len(batch['img'])),
|
||||
cls=torch.argmax(preds, dim=1),
|
||||
fname=self.save_dir / f'val_batch{ni}_pred.jpg',
|
||||
names=self.names) # pred
|
||||
|
||||
|
||||
def val(cfg=DEFAULT_CFG, use_python=False):
|
||||
"""Validate YOLO model using custom data."""
|
||||
|
@ -9,13 +9,6 @@ from ultralytics.yolo.utils import DEFAULT_CFG, ROOT, ops
|
||||
|
||||
class DetectionPredictor(BasePredictor):
|
||||
|
||||
def preprocess(self, img):
|
||||
"""Convert an image to PyTorch tensor and normalize pixel values."""
|
||||
img = (img if isinstance(img, torch.Tensor) else torch.from_numpy(img)).to(self.model.device)
|
||||
img = img.half() if self.model.fp16 else img.float() # uint8 to fp16/32
|
||||
img /= 255 # 0 - 255 to 0.0 - 1.0
|
||||
return img
|
||||
|
||||
def postprocess(self, preds, img, orig_imgs):
|
||||
"""Postprocesses predictions and returns a list of Results objects."""
|
||||
preds = ops.non_max_suppression(preds,
|
||||
@ -30,7 +23,7 @@ class DetectionPredictor(BasePredictor):
|
||||
orig_img = orig_imgs[i] if isinstance(orig_imgs, list) else orig_imgs
|
||||
if not isinstance(orig_imgs, torch.Tensor):
|
||||
pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape)
|
||||
path, _, _, _, _ = self.batch
|
||||
path = self.batch[0]
|
||||
img_path = path[i] if isinstance(path, list) else path
|
||||
results.append(Results(orig_img=orig_img, path=img_path, names=self.model.names, boxes=pred))
|
||||
return results
|
||||
|
@ -7,41 +7,63 @@ import torch.nn as nn
|
||||
|
||||
from ultralytics.nn.tasks import DetectionModel
|
||||
from ultralytics.yolo import v8
|
||||
from ultralytics.yolo.data import build_dataloader
|
||||
from ultralytics.yolo.data import build_dataloader, build_yolo_dataset
|
||||
from ultralytics.yolo.data.dataloaders.v5loader import create_dataloader
|
||||
from ultralytics.yolo.engine.trainer import BaseTrainer
|
||||
from ultralytics.yolo.utils import DEFAULT_CFG, RANK, colorstr
|
||||
from ultralytics.yolo.utils import DEFAULT_CFG, LOGGER, RANK, colorstr
|
||||
from ultralytics.yolo.utils.loss import BboxLoss
|
||||
from ultralytics.yolo.utils.ops import xywh2xyxy
|
||||
from ultralytics.yolo.utils.plotting import plot_images, plot_labels, plot_results
|
||||
from ultralytics.yolo.utils.tal import TaskAlignedAssigner, dist2bbox, make_anchors
|
||||
from ultralytics.yolo.utils.torch_utils import de_parallel
|
||||
from ultralytics.yolo.utils.torch_utils import de_parallel, torch_distributed_zero_first
|
||||
|
||||
|
||||
# BaseTrainer python usage
|
||||
class DetectionTrainer(BaseTrainer):
|
||||
|
||||
def build_dataset(self, img_path, mode='train', batch=None):
|
||||
"""Build YOLO Dataset
|
||||
|
||||
Args:
|
||||
img_path (str): Path to the folder containing images.
|
||||
mode (str): `train` mode or `val` mode, users are able to customize different augmentations for each mode.
|
||||
batch_size (int, optional): Size of batches, this is for `rect`. Defaults to None.
|
||||
"""
|
||||
gs = max(int(de_parallel(self.model).stride.max() if self.model else 0), 32)
|
||||
return build_yolo_dataset(self.args, img_path, batch, self.data, mode=mode, rect=mode == 'val', stride=gs)
|
||||
|
||||
def get_dataloader(self, dataset_path, batch_size, rank=0, mode='train'):
|
||||
"""TODO: manage splits differently."""
|
||||
# Calculate stride - check if model is initialized
|
||||
gs = max(int(de_parallel(self.model).stride.max() if self.model else 0), 32)
|
||||
return create_dataloader(path=dataset_path,
|
||||
imgsz=self.args.imgsz,
|
||||
batch_size=batch_size,
|
||||
stride=gs,
|
||||
hyp=vars(self.args),
|
||||
augment=mode == 'train',
|
||||
cache=self.args.cache,
|
||||
pad=0 if mode == 'train' else 0.5,
|
||||
rect=self.args.rect or mode == 'val',
|
||||
rank=rank,
|
||||
workers=self.args.workers,
|
||||
close_mosaic=self.args.close_mosaic != 0,
|
||||
prefix=colorstr(f'{mode}: '),
|
||||
shuffle=mode == 'train',
|
||||
seed=self.args.seed)[0] if self.args.v5loader else \
|
||||
build_dataloader(self.args, batch_size, img_path=dataset_path, stride=gs, rank=rank, mode=mode,
|
||||
rect=mode == 'val', data_info=self.data)[0]
|
||||
if self.args.v5loader:
|
||||
LOGGER.warning("WARNING ⚠️ 'v5loader' feature is deprecated and will be removed soon. You can train using "
|
||||
'the default YOLOv8 dataloader instead, no argument is needed.')
|
||||
gs = max(int(de_parallel(self.model).stride.max() if self.model else 0), 32)
|
||||
return create_dataloader(path=dataset_path,
|
||||
imgsz=self.args.imgsz,
|
||||
batch_size=batch_size,
|
||||
stride=gs,
|
||||
hyp=vars(self.args),
|
||||
augment=mode == 'train',
|
||||
cache=self.args.cache,
|
||||
pad=0 if mode == 'train' else 0.5,
|
||||
rect=self.args.rect or mode == 'val',
|
||||
rank=rank,
|
||||
workers=self.args.workers,
|
||||
close_mosaic=self.args.close_mosaic != 0,
|
||||
prefix=colorstr(f'{mode}: '),
|
||||
shuffle=mode == 'train',
|
||||
seed=self.args.seed)[0]
|
||||
assert mode in ['train', 'val']
|
||||
with torch_distributed_zero_first(rank): # init dataset *.cache only once if DDP
|
||||
dataset = self.build_dataset(dataset_path, mode, batch_size)
|
||||
shuffle = mode == 'train'
|
||||
if getattr(dataset, 'rect', False) and shuffle:
|
||||
LOGGER.warning("WARNING ⚠️ 'rect=True' is incompatible with DataLoader shuffle, setting shuffle=False")
|
||||
shuffle = False
|
||||
workers = self.args.workers if mode == 'train' else self.args.workers * 2
|
||||
dataloader = build_dataloader(dataset, batch_size, workers, shuffle, rank)
|
||||
return dataloader
|
||||
|
||||
def preprocess_batch(self, batch):
|
||||
"""Preprocesses a batch of images by scaling and converting to float."""
|
||||
|
@ -6,7 +6,7 @@ from pathlib import Path
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
from ultralytics.yolo.data import build_dataloader
|
||||
from ultralytics.yolo.data import build_dataloader, build_yolo_dataset
|
||||
from ultralytics.yolo.data.dataloaders.v5loader import create_dataloader
|
||||
from ultralytics.yolo.engine.validator import BaseValidator
|
||||
from ultralytics.yolo.utils import DEFAULT_CFG, LOGGER, colorstr, ops
|
||||
@ -171,24 +171,40 @@ class DetectionValidator(BaseValidator):
|
||||
correct[matches[:, 1].astype(int), i] = True
|
||||
return torch.tensor(correct, dtype=torch.bool, device=detections.device)
|
||||
|
||||
def build_dataset(self, img_path, mode='val', batch=None):
|
||||
"""Build YOLO Dataset
|
||||
|
||||
Args:
|
||||
img_path (str): Path to the folder containing images.
|
||||
mode (str): `train` mode or `val` mode, users are able to customize different augmentations for each mode.
|
||||
batch_size (int, optional): Size of batches, this is for `rect`. Defaults to None.
|
||||
"""
|
||||
gs = max(int(de_parallel(self.model).stride if self.model else 0), 32)
|
||||
return build_yolo_dataset(self.args, img_path, batch, self.data, mode=mode, stride=gs)
|
||||
|
||||
def get_dataloader(self, dataset_path, batch_size):
|
||||
"""TODO: manage splits differently."""
|
||||
# Calculate stride - check if model is initialized
|
||||
gs = max(int(de_parallel(self.model).stride if self.model else 0), 32)
|
||||
return create_dataloader(path=dataset_path,
|
||||
imgsz=self.args.imgsz,
|
||||
batch_size=batch_size,
|
||||
stride=gs,
|
||||
hyp=vars(self.args),
|
||||
cache=False,
|
||||
pad=0.5,
|
||||
rect=self.args.rect,
|
||||
workers=self.args.workers,
|
||||
prefix=colorstr(f'{self.args.mode}: '),
|
||||
shuffle=False,
|
||||
seed=self.args.seed)[0] if self.args.v5loader else \
|
||||
build_dataloader(self.args, batch_size, img_path=dataset_path, stride=gs, data_info=self.data,
|
||||
mode='val')[0]
|
||||
if self.args.v5loader:
|
||||
LOGGER.warning("WARNING ⚠️ 'v5loader' feature is deprecated and will be removed soon. You can train using "
|
||||
'the default YOLOv8 dataloader instead, no argument is needed.')
|
||||
gs = max(int(de_parallel(self.model).stride if self.model else 0), 32)
|
||||
return create_dataloader(path=dataset_path,
|
||||
imgsz=self.args.imgsz,
|
||||
batch_size=batch_size,
|
||||
stride=gs,
|
||||
hyp=vars(self.args),
|
||||
cache=False,
|
||||
pad=0.5,
|
||||
rect=self.args.rect,
|
||||
workers=self.args.workers,
|
||||
prefix=colorstr(f'{self.args.mode}: '),
|
||||
shuffle=False,
|
||||
seed=self.args.seed)[0]
|
||||
|
||||
dataset = self.build_dataset(dataset_path, batch=batch_size, mode='val')
|
||||
dataloader = build_dataloader(dataset, batch_size, self.args.workers, shuffle=False, rank=-1)
|
||||
return dataloader
|
||||
|
||||
def plot_val_samples(self, batch, ni):
|
||||
"""Plot validation image samples."""
|
||||
|
@ -7,6 +7,10 @@ from ultralytics.yolo.v8.detect.predict import DetectionPredictor
|
||||
|
||||
class PosePredictor(DetectionPredictor):
|
||||
|
||||
def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None):
|
||||
super().__init__(cfg, overrides, _callbacks)
|
||||
self.args.task = 'pose'
|
||||
|
||||
def postprocess(self, preds, img, orig_img):
|
||||
"""Return detection results for a given input image or list of images."""
|
||||
preds = ops.non_max_suppression(preds,
|
||||
@ -24,7 +28,7 @@ class PosePredictor(DetectionPredictor):
|
||||
pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], shape).round()
|
||||
pred_kpts = pred[:, 6:].view(len(pred), *self.model.kpt_shape) if len(pred) else pred[:, 6:]
|
||||
pred_kpts = ops.scale_coords(img.shape[2:], pred_kpts, shape)
|
||||
path, _, _, _, _ = self.batch
|
||||
path = self.batch[0]
|
||||
img_path = path[i] if isinstance(path, list) else path
|
||||
results.append(
|
||||
Results(orig_img=orig_img,
|
||||
|
@ -9,6 +9,10 @@ from ultralytics.yolo.v8.detect.predict import DetectionPredictor
|
||||
|
||||
class SegmentationPredictor(DetectionPredictor):
|
||||
|
||||
def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None):
|
||||
super().__init__(cfg, overrides, _callbacks)
|
||||
self.args.task = 'segment'
|
||||
|
||||
def postprocess(self, preds, img, orig_imgs):
|
||||
"""TODO: filter by classes."""
|
||||
p = ops.non_max_suppression(preds[0],
|
||||
@ -22,7 +26,7 @@ class SegmentationPredictor(DetectionPredictor):
|
||||
proto = preds[1][-1] if len(preds[1]) == 3 else preds[1] # second output is len 3 if pt, but only 1 if exported
|
||||
for i, pred in enumerate(p):
|
||||
orig_img = orig_imgs[i] if isinstance(orig_imgs, list) else orig_imgs
|
||||
path, _, _, _, _ = self.batch
|
||||
path = self.batch[0]
|
||||
img_path = path[i] if isinstance(path, list) else path
|
||||
if not len(pred): # save empty boxes
|
||||
results.append(Results(orig_img=orig_img, path=img_path, names=self.model.names, boxes=pred[:, :6]))
|
||||
|
Reference in New Issue
Block a user