ultralytics 8.0.105 classification hyp fix and new onplot callbacks (#2684)

Co-authored-by: ayush chaurasia <ayush.chaurarsia@gmail.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Ivan Shcheklein <shcheklein@gmail.com>
This commit is contained in:
Glenn Jocher
2023-05-17 19:10:20 +02:00
committed by GitHub
parent b1119d512e
commit 23fc50641c
92 changed files with 378 additions and 206 deletions

View File

@ -9,6 +9,12 @@ description: Explore RT-DETR, a high-performance real-time object detector. Lear
Real-Time Detection Transformer (RT-DETR) is an end-to-end object detector that provides real-time performance while maintaining high accuracy. It efficiently processes multi-scale features by decoupling intra-scale interaction and cross-scale fusion, and supports flexible adjustment of inference speed using different decoder layers without retraining. RT-DETR outperforms many real-time object detectors on accelerated backends like CUDA with TensorRT.
![Model example image](https://user-images.githubusercontent.com/26833433/238963168-90e8483f-90aa-4eb6-a5e1-0d408b23dd33.png)
**Overview of RT-DETR.** Model architecture diagram showing the last three stages of the backbone {S3, S4, S5} as the input
to the encoder. The efficient hybrid encoder transforms multiscale features into a sequence of image features through intrascale feature interaction (AIFI) and cross-scale feature-fusion module (CCFM). The IoU-aware query selection is employed
to select a fixed number of image features to serve as initial object queries for the decoder. Finally, the decoder with auxiliary
prediction heads iteratively optimizes object queries to generate boxes and confidence scores ([source](https://arxiv.org/pdf/2304.08069.pdf)).
### Key Features
- **Efficient Hybrid Encoder:** RT-DETR uses an efficient hybrid encoder that processes multi-scale features by decoupling intra-scale interaction and cross-scale fusion. This design reduces computational costs and allows for real-time object detection.

View File

@ -57,7 +57,7 @@ Auto-annotation is an essential feature that allows you to generate a [segmentat
To auto-annotate your dataset using the Ultralytics framework, you can use the `auto_annotate` function as shown below:
```python
from ultralytics.yolo.data import auto_annotate
from ultralytics.yolo.data.annotator import auto_annotate
auto_annotate(data="path/to/images", det_model="yolov8x.pt", sam_model='sam_b.pt')
```