ultralytics 8.0.98
add Baidu RT-DETR models (#2527)
Co-authored-by: Kalen Michael <kalenmike@gmail.com> Co-authored-by: Laughing <61612323+Laughing-q@users.noreply.github.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Yonghye Kwon <developer.0hye@gmail.com> Co-authored-by: Dowon <ks2515@naver.com>
This commit is contained in:
@ -1 +1,6 @@
|
||||
from .sam import SAM # noqa
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
|
||||
from .rtdetr import RTDETR
|
||||
from .sam import SAM
|
||||
|
||||
__all__ = 'RTDETR', 'SAM', 'SAM' # allow simpler import
|
||||
|
7
ultralytics/vit/rtdetr/__init__.py
Normal file
7
ultralytics/vit/rtdetr/__init__.py
Normal file
@ -0,0 +1,7 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
|
||||
from .model import RTDETR
|
||||
from .predict import RTDETRPredictor
|
||||
from .val import RTDETRValidator
|
||||
|
||||
__all__ = 'RTDETRPredictor', 'RTDETRValidator', 'RTDETR'
|
104
ultralytics/vit/rtdetr/model.py
Normal file
104
ultralytics/vit/rtdetr/model.py
Normal file
@ -0,0 +1,104 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
"""
|
||||
# RT-DETR model interface
|
||||
"""
|
||||
|
||||
from pathlib import Path
|
||||
|
||||
from ultralytics.nn.tasks import DetectionModel, attempt_load_one_weight, yaml_model_load
|
||||
from ultralytics.yolo.cfg import get_cfg
|
||||
from ultralytics.yolo.engine.exporter import Exporter
|
||||
from ultralytics.yolo.utils import DEFAULT_CFG, DEFAULT_CFG_DICT
|
||||
from ultralytics.yolo.utils.checks import check_imgsz
|
||||
|
||||
from ...yolo.utils.torch_utils import smart_inference_mode
|
||||
from .predict import RTDETRPredictor
|
||||
from .val import RTDETRValidator
|
||||
|
||||
|
||||
class RTDETR:
|
||||
|
||||
def __init__(self, model='rtdetr-l.pt') -> None:
|
||||
if model and not model.endswith('.pt') and not model.endswith('.yaml'):
|
||||
raise NotImplementedError('RT-DETR only supports creating from pt file or yaml file.')
|
||||
# Load or create new YOLO model
|
||||
self.predictor = None
|
||||
suffix = Path(model).suffix
|
||||
if suffix == '.yaml':
|
||||
self._new(model)
|
||||
else:
|
||||
self._load(model)
|
||||
|
||||
def _new(self, cfg: str, verbose=True):
|
||||
cfg_dict = yaml_model_load(cfg)
|
||||
self.cfg = cfg
|
||||
self.task = 'detect'
|
||||
self.model = DetectionModel(cfg_dict, verbose=verbose) # build model
|
||||
|
||||
# Below added to allow export from yamls
|
||||
self.model.args = DEFAULT_CFG_DICT # attach args to model
|
||||
self.model.task = self.task
|
||||
|
||||
@smart_inference_mode()
|
||||
def _load(self, weights: str):
|
||||
self.model, _ = attempt_load_one_weight(weights)
|
||||
self.model.args = DEFAULT_CFG_DICT # attach args to model
|
||||
self.task = self.model.args['task']
|
||||
|
||||
@smart_inference_mode()
|
||||
def predict(self, source, stream=False, **kwargs):
|
||||
"""
|
||||
Perform prediction using the YOLO model.
|
||||
|
||||
Args:
|
||||
source (str | int | PIL | np.ndarray): The source of the image to make predictions on.
|
||||
Accepts all source types accepted by the YOLO model.
|
||||
stream (bool): Whether to stream the predictions or not. Defaults to False.
|
||||
**kwargs : Additional keyword arguments passed to the predictor.
|
||||
Check the 'configuration' section in the documentation for all available options.
|
||||
|
||||
Returns:
|
||||
(List[ultralytics.yolo.engine.results.Results]): The prediction results.
|
||||
"""
|
||||
overrides = dict(conf=0.25, task='detect', mode='predict')
|
||||
overrides.update(kwargs) # prefer kwargs
|
||||
if not self.predictor:
|
||||
self.predictor = RTDETRPredictor(overrides=overrides)
|
||||
self.predictor.setup_model(model=self.model)
|
||||
else: # only update args if predictor is already setup
|
||||
self.predictor.args = get_cfg(self.predictor.args, overrides)
|
||||
return self.predictor(source, stream=stream)
|
||||
|
||||
def train(self, **kwargs):
|
||||
"""Function trains models but raises an error as RTDETR models do not support training."""
|
||||
raise NotImplementedError("RTDETR models don't support training")
|
||||
|
||||
def val(self, **kwargs):
|
||||
"""Run validation given dataset."""
|
||||
overrides = dict(task='detect', mode='val')
|
||||
overrides.update(kwargs) # prefer kwargs
|
||||
args = get_cfg(cfg=DEFAULT_CFG, overrides=overrides)
|
||||
args.imgsz = check_imgsz(args.imgsz, max_dim=1)
|
||||
validator = RTDETRValidator(args=args)
|
||||
validator(model=self.model)
|
||||
self.metrics = validator.metrics
|
||||
return validator.metrics
|
||||
|
||||
@smart_inference_mode()
|
||||
def export(self, **kwargs):
|
||||
"""
|
||||
Export model.
|
||||
|
||||
Args:
|
||||
**kwargs : Any other args accepted by the predictors. To see all args check 'configuration' section in docs
|
||||
"""
|
||||
overrides = dict(task='detect')
|
||||
overrides.update(kwargs)
|
||||
overrides['mode'] = 'export'
|
||||
args = get_cfg(cfg=DEFAULT_CFG, overrides=overrides)
|
||||
args.task = self.task
|
||||
if args.imgsz == DEFAULT_CFG.imgsz:
|
||||
args.imgsz = self.model.args['imgsz'] # use trained imgsz unless custom value is passed
|
||||
if args.batch == DEFAULT_CFG.batch:
|
||||
args.batch = 1 # default to 1 if not modified
|
||||
return Exporter(overrides=args)(model=self.model)
|
42
ultralytics/vit/rtdetr/predict.py
Normal file
42
ultralytics/vit/rtdetr/predict.py
Normal file
@ -0,0 +1,42 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
|
||||
import torch
|
||||
|
||||
from ultralytics.yolo.data.augment import LetterBox
|
||||
from ultralytics.yolo.engine.predictor import BasePredictor
|
||||
from ultralytics.yolo.engine.results import Results
|
||||
from ultralytics.yolo.utils import ops
|
||||
|
||||
|
||||
class RTDETRPredictor(BasePredictor):
|
||||
|
||||
def postprocess(self, preds, img, orig_imgs):
|
||||
"""Postprocess predictions and returns a list of Results objects."""
|
||||
bboxes, scores = preds[:2] # (1, bs, 300, 4), (1, bs, 300, nc)
|
||||
bboxes, scores = bboxes.squeeze_(0), scores.squeeze_(0)
|
||||
results = []
|
||||
for i, bbox in enumerate(bboxes): # (300, 4)
|
||||
bbox = ops.xywh2xyxy(bbox)
|
||||
score, cls = scores[i].max(-1) # (300, )
|
||||
idx = score > self.args.conf
|
||||
pred = torch.cat([bbox, score[..., None], cls[..., None]], dim=-1)[idx] # filter
|
||||
orig_img = orig_imgs[i] if isinstance(orig_imgs, list) else orig_imgs
|
||||
oh, ow = orig_img.shape[:2]
|
||||
if not isinstance(orig_imgs, torch.Tensor):
|
||||
pred[..., [0, 2]] *= ow
|
||||
pred[..., [1, 3]] *= oh
|
||||
path = self.batch[0]
|
||||
img_path = path[i] if isinstance(path, list) else path
|
||||
results.append(Results(orig_img=orig_img, path=img_path, names=self.model.names, boxes=pred))
|
||||
return results
|
||||
|
||||
def pre_transform(self, im):
|
||||
"""Pre-transform input image before inference.
|
||||
|
||||
Args:
|
||||
im (List(np.ndarray)): (N, 3, h, w) for tensor, [(h, w, 3) x N] for list.
|
||||
|
||||
Return: A list of transformed imgs.
|
||||
"""
|
||||
# The size must be square(640) and scaleFilled.
|
||||
return [LetterBox(self.imgsz, auto=False, scaleFill=True)(image=x) for x in im]
|
114
ultralytics/vit/rtdetr/val.py
Normal file
114
ultralytics/vit/rtdetr/val.py
Normal file
@ -0,0 +1,114 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
|
||||
from pathlib import Path
|
||||
|
||||
import torch
|
||||
|
||||
from ultralytics.yolo.data import YOLODataset
|
||||
from ultralytics.yolo.data.augment import Compose, Format, LetterBox
|
||||
from ultralytics.yolo.utils import colorstr, ops
|
||||
from ultralytics.yolo.v8.detect import DetectionValidator
|
||||
|
||||
__all__ = ['RTDETRValidator']
|
||||
|
||||
|
||||
# TODO: Temporarily, RT-DETR does not need padding.
|
||||
class RTDETRDataset(YOLODataset):
|
||||
|
||||
def __init__(self, *args, data=None, **kwargs):
|
||||
super().__init__(*args, data=data, use_segments=False, use_keypoints=False, **kwargs)
|
||||
|
||||
def build_transforms(self, hyp=None):
|
||||
"""Temporarily, only for evaluation."""
|
||||
transforms = Compose([LetterBox(new_shape=(self.imgsz, self.imgsz), auto=False, scaleFill=True)])
|
||||
transforms.append(
|
||||
Format(bbox_format='xywh',
|
||||
normalize=True,
|
||||
return_mask=self.use_segments,
|
||||
return_keypoint=self.use_keypoints,
|
||||
batch_idx=True,
|
||||
mask_ratio=hyp.mask_ratio,
|
||||
mask_overlap=hyp.overlap_mask))
|
||||
return transforms
|
||||
|
||||
|
||||
class RTDETRValidator(DetectionValidator):
|
||||
|
||||
def build_dataset(self, img_path, mode='val', batch=None):
|
||||
"""Build YOLO Dataset
|
||||
|
||||
Args:
|
||||
img_path (str): Path to the folder containing images.
|
||||
mode (str): `train` mode or `val` mode, users are able to customize different augmentations for each mode.
|
||||
batch (int, optional): Size of batches, this is for `rect`. Defaults to None.
|
||||
"""
|
||||
return RTDETRDataset(
|
||||
img_path=img_path,
|
||||
imgsz=self.args.imgsz,
|
||||
batch_size=batch,
|
||||
augment=False, # no augmentation
|
||||
hyp=self.args,
|
||||
rect=False, # no rect
|
||||
cache=self.args.cache or None,
|
||||
prefix=colorstr(f'{mode}: '),
|
||||
data=self.data)
|
||||
|
||||
def postprocess(self, preds):
|
||||
"""Apply Non-maximum suppression to prediction outputs."""
|
||||
bboxes, scores = preds[:2] # (1, bs, 300, 4), (1, bs, 300, nc)
|
||||
bboxes, scores = bboxes.squeeze_(0), scores.squeeze_(0) # (bs, 300, 4)
|
||||
bs = len(bboxes)
|
||||
outputs = [torch.zeros((0, 6), device=bboxes.device)] * bs
|
||||
for i, bbox in enumerate(bboxes): # (300, 4)
|
||||
bbox = ops.xywh2xyxy(bbox)
|
||||
score, cls = scores[i].max(-1) # (300, )
|
||||
# Do not need threshold for evaluation as only got 300 boxes here.
|
||||
# idx = score > self.args.conf
|
||||
pred = torch.cat([bbox, score[..., None], cls[..., None]], dim=-1) # filter
|
||||
outputs[i] = pred # [idx]
|
||||
|
||||
return outputs
|
||||
|
||||
def update_metrics(self, preds, batch):
|
||||
"""Metrics."""
|
||||
for si, pred in enumerate(preds):
|
||||
idx = batch['batch_idx'] == si
|
||||
cls = batch['cls'][idx]
|
||||
bbox = batch['bboxes'][idx]
|
||||
nl, npr = cls.shape[0], pred.shape[0] # number of labels, predictions
|
||||
shape = batch['ori_shape'][si]
|
||||
correct_bboxes = torch.zeros(npr, self.niou, dtype=torch.bool, device=self.device) # init
|
||||
self.seen += 1
|
||||
|
||||
if npr == 0:
|
||||
if nl:
|
||||
self.stats.append((correct_bboxes, *torch.zeros((2, 0), device=self.device), cls.squeeze(-1)))
|
||||
if self.args.plots:
|
||||
self.confusion_matrix.process_batch(detections=None, labels=cls.squeeze(-1))
|
||||
continue
|
||||
|
||||
# Predictions
|
||||
if self.args.single_cls:
|
||||
pred[:, 5] = 0
|
||||
predn = pred.clone()
|
||||
predn[..., [0, 2]] *= shape[1] # native-space pred
|
||||
predn[..., [1, 3]] *= shape[0] # native-space pred
|
||||
|
||||
# Evaluate
|
||||
if nl:
|
||||
tbox = ops.xywh2xyxy(bbox) # target boxes
|
||||
tbox[..., [0, 2]] *= shape[1] # native-space pred
|
||||
tbox[..., [1, 3]] *= shape[0] # native-space pred
|
||||
labelsn = torch.cat((cls, tbox), 1) # native-space labels
|
||||
correct_bboxes = self._process_batch(predn, labelsn)
|
||||
# TODO: maybe remove these `self.` arguments as they already are member variable
|
||||
if self.args.plots:
|
||||
self.confusion_matrix.process_batch(predn, labelsn)
|
||||
self.stats.append((correct_bboxes, pred[:, 4], pred[:, 5], cls.squeeze(-1))) # (conf, pcls, tcls)
|
||||
|
||||
# Save
|
||||
if self.args.save_json:
|
||||
self.pred_to_json(predn, batch['im_file'][si])
|
||||
if self.args.save_txt:
|
||||
file = self.save_dir / 'labels' / f'{Path(batch["im_file"][si]).stem}.txt'
|
||||
self.save_one_txt(predn, self.args.save_conf, shape, file)
|
@ -157,5 +157,5 @@ class MLP(nn.Module):
|
||||
for i, layer in enumerate(self.layers):
|
||||
x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
|
||||
if self.sigmoid_output:
|
||||
x = F.sigmoid(x)
|
||||
x = torch.sigmoid(x)
|
||||
return x
|
||||
|
Reference in New Issue
Block a user