Update YOLOv5 YAMLs to 'u' YAMLs (#800)
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
@ -70,7 +70,7 @@ from ultralytics.nn.modules import Detect, Segment
|
||||
from ultralytics.nn.tasks import ClassificationModel, DetectionModel, SegmentationModel, guess_model_task
|
||||
from ultralytics.yolo.cfg import get_cfg
|
||||
from ultralytics.yolo.data.dataloaders.stream_loaders import LoadImages
|
||||
from ultralytics.yolo.data.utils import check_det_dataset
|
||||
from ultralytics.yolo.data.utils import check_det_dataset, IMAGENET_MEAN, IMAGENET_STD
|
||||
from ultralytics.yolo.utils import DEFAULT_CFG, LOGGER, callbacks, colorstr, get_default_args, yaml_save
|
||||
from ultralytics.yolo.utils.checks import check_imgsz, check_requirements, check_version, check_yaml
|
||||
from ultralytics.yolo.utils.files import file_size
|
||||
@ -185,8 +185,8 @@ class Exporter:
|
||||
if self.args.half and not coreml and not xml:
|
||||
im, model = im.half(), model.half() # to FP16
|
||||
shape = tuple((y[0] if isinstance(y, tuple) else y).shape) # model output shape
|
||||
LOGGER.info(
|
||||
f"\n{colorstr('PyTorch:')} starting from {file} with output shape {shape} ({file_size(file):.1f} MB)")
|
||||
LOGGER.info(f"\n{colorstr('PyTorch:')} starting from {file} with input shape {tuple(im.shape)} and "
|
||||
f"output shape {shape} ({file_size(file):.1f} MB)")
|
||||
|
||||
# Warnings
|
||||
warnings.filterwarnings('ignore', category=torch.jit.TracerWarning) # suppress TracerWarning
|
||||
@ -384,12 +384,18 @@ class Exporter:
|
||||
LOGGER.info(f'\n{prefix} starting export with coremltools {ct.__version__}...')
|
||||
f = self.file.with_suffix('.mlmodel')
|
||||
|
||||
task = self.model.task
|
||||
if self.model.task == 'classify':
|
||||
bias = [-x for x in IMAGENET_MEAN]
|
||||
scale = 1 / 255 / (sum(IMAGENET_STD) / 3)
|
||||
classifier_config = ct.ClassifierConfig(list(self.model.names.values()))
|
||||
else:
|
||||
bias = [0.0, 0.0, 0.0]
|
||||
scale = 1 / 255
|
||||
classifier_config = None
|
||||
model = iOSModel(self.model, self.im).eval() if self.args.nms else self.model
|
||||
ts = torch.jit.trace(model, self.im, strict=False) # TorchScript model
|
||||
classifier_config = ct.ClassifierConfig(list(model.names.values())) if task == 'classify' else None
|
||||
ct_model = ct.convert(ts,
|
||||
inputs=[ct.ImageType('image', shape=self.im.shape, scale=1 / 255, bias=[0, 0, 0])],
|
||||
inputs=[ct.ImageType('image', shape=self.im.shape, scale=scale, bias=bias)],
|
||||
classifier_config=classifier_config)
|
||||
bits, mode = (8, 'kmeans_lut') if self.args.int8 else (16, 'linear') if self.args.half else (32, None)
|
||||
if bits < 32:
|
||||
|
@ -162,6 +162,8 @@ class YOLO:
|
||||
args = get_cfg(cfg=DEFAULT_CFG, overrides=overrides)
|
||||
args.data = data or args.data
|
||||
args.task = self.task
|
||||
if args.imgsz == DEFAULT_CFG.imgsz:
|
||||
args.imgsz = self.model.args['imgsz'] # use trained imgsz unless custom value is passed
|
||||
args.imgsz = check_imgsz(args.imgsz, max_dim=1)
|
||||
|
||||
validator = self.ValidatorClass(args=args)
|
||||
@ -180,6 +182,8 @@ class YOLO:
|
||||
overrides.update(kwargs)
|
||||
args = get_cfg(cfg=DEFAULT_CFG, overrides=overrides)
|
||||
args.task = self.task
|
||||
if args.imgsz == DEFAULT_CFG.imgsz:
|
||||
args.imgsz = self.model.args['imgsz'] # use trained imgsz unless custom value is passed
|
||||
|
||||
exporter = Exporter(overrides=args)
|
||||
exporter(model=self.model)
|
||||
|
@ -120,9 +120,6 @@ class BasePredictor:
|
||||
pass
|
||||
|
||||
def setup_source(self, source):
|
||||
if not self.model:
|
||||
raise Exception("Model not initialized!")
|
||||
|
||||
self.imgsz = check_imgsz(self.args.imgsz, stride=self.model.stride, min_dim=2) # check image size
|
||||
self.dataset = load_inference_source(source=source,
|
||||
transforms=getattr(self.model.model, 'transforms', None),
|
||||
@ -190,6 +187,10 @@ class BasePredictor:
|
||||
if self.args.verbose:
|
||||
LOGGER.info(f"{s}{'' if len(preds) else '(no detections), '}{self.dt[1].dt * 1E3:.1f}ms")
|
||||
|
||||
# Release assets
|
||||
if isinstance(self.vid_writer[-1], cv2.VideoWriter):
|
||||
self.vid_writer[-1].release() # release final video writer
|
||||
|
||||
# Print results
|
||||
if self.args.verbose and self.seen:
|
||||
t = tuple(x.t / self.seen * 1E3 for x in self.dt) # speeds per image
|
||||
|
@ -5,6 +5,7 @@ import inspect
|
||||
import math
|
||||
import os
|
||||
import platform
|
||||
import re
|
||||
import shutil
|
||||
import urllib
|
||||
from pathlib import Path
|
||||
@ -67,12 +68,13 @@ def check_imgsz(imgsz, stride=32, min_dim=1, max_dim=2, floor=0):
|
||||
f"Valid imgsz types are int i.e. 'imgsz=640' or list i.e. 'imgsz=[640,640]'")
|
||||
|
||||
# Apply max_dim
|
||||
if max_dim == 1:
|
||||
LOGGER.warning(f"WARNING ⚠️ 'train' and 'val' imgsz types must be integer, updating to 'imgsz={max(imgsz)}'. "
|
||||
f"'predict' and 'export' imgsz may be list or integer, "
|
||||
f"i.e. 'yolo export imgsz=640,480' or 'yolo export imgsz=640'")
|
||||
if len(imgsz) > max_dim:
|
||||
msg = "'train' and 'val' imgsz must be an integer, while 'predict' and 'export' imgsz may be a [h, w] list " \
|
||||
"or an integer, i.e. 'yolo export imgsz=640,480' or 'yolo export imgsz=640'"
|
||||
if max_dim != 1:
|
||||
raise ValueError(f"imgsz={imgsz} is not a valid image size. {msg}")
|
||||
LOGGER.warning(f"WARNING ⚠️ updating to 'imgsz={max(imgsz)}'. {msg}")
|
||||
imgsz = [max(imgsz)]
|
||||
|
||||
# Make image size a multiple of the stride
|
||||
sz = [max(math.ceil(x / stride) * stride, floor) for x in imgsz]
|
||||
|
||||
@ -220,10 +222,24 @@ def check_suffix(file='yolov8n.pt', suffix=('.pt',), msg=''):
|
||||
assert s in suffix, f"{msg}{f} acceptable suffix is {suffix}"
|
||||
|
||||
|
||||
def check_yolov5u_filename(file: str):
|
||||
# Replace legacy YOLOv5 filenames with updated YOLOv5u filenames
|
||||
if 'yolov3' in file or 'yolov5' in file and 'u' not in file:
|
||||
original_file = file
|
||||
file = re.sub(r"(.*yolov5([nsmlx]))\.", "\\1u.", file) # i.e. yolov5n.pt -> yolov5nu.pt
|
||||
file = re.sub(r"(.*yolov3(|-tiny|-spp))\.", "\\1u.", file) # i.e. yolov3-spp.pt -> yolov3-sppu.pt
|
||||
if file != original_file:
|
||||
LOGGER.info(f"PRO TIP 💡 Replace 'model={original_file}' with new 'model={file}'.\nYOLOv5 'u' models are "
|
||||
f"trained with https://github.com/ultralytics/ultralytics and feature improved performance vs "
|
||||
f"standard YOLOv5 models trained with https://github.com/ultralytics/yolov5.\n")
|
||||
return file
|
||||
|
||||
|
||||
def check_file(file, suffix=''):
|
||||
# Search/download file (if necessary) and return path
|
||||
check_suffix(file, suffix) # optional
|
||||
file = str(file) # convert to str()
|
||||
file = str(file) # convert to string
|
||||
file = check_yolov5u_filename(file) # yolov5n -> yolov5nu
|
||||
if not file or ('://' not in file and Path(file).is_file()): # exists ('://' check required in Windows Python<3.10)
|
||||
return file
|
||||
elif file.lower().startswith(('https://', 'http://', 'rtsp://', 'rtmp://')): # download
|
||||
|
@ -1,7 +1,6 @@
|
||||
# Ultralytics YOLO 🚀, GPL-3.0 license
|
||||
|
||||
import contextlib
|
||||
import re
|
||||
import subprocess
|
||||
from itertools import repeat
|
||||
from multiprocessing.pool import ThreadPool
|
||||
@ -111,6 +110,7 @@ def safe_download(url,
|
||||
def attempt_download_asset(file, repo='ultralytics/assets', release='v0.0.0'):
|
||||
# Attempt file download from GitHub release assets if not found locally. release = 'latest', 'v6.2', etc.
|
||||
from ultralytics.yolo.utils import SETTINGS
|
||||
from ultralytics.yolo.utils.checks import check_yolov5u_filename
|
||||
|
||||
def github_assets(repository, version='latest'):
|
||||
# Return GitHub repo tag and assets (i.e. ['yolov8n.pt', 'yolov8s.pt', ...])
|
||||
@ -121,15 +121,7 @@ def attempt_download_asset(file, repo='ultralytics/assets', release='v0.0.0'):
|
||||
|
||||
# YOLOv3/5u updates
|
||||
file = str(file)
|
||||
if 'yolov3' in file or 'yolov5' in file and 'u' not in file:
|
||||
original_file = file
|
||||
file = re.sub(r"(.*yolov5([nsmlx]))\.pt", "\\1u.pt", file) # i.e. yolov5n.pt -> yolov5nu.pt
|
||||
file = re.sub(r"(.*yolov3(|-tiny|-spp))\.pt", "\\1u.pt", file) # i.e. yolov3-spp.pt -> yolov3-sppu.pt
|
||||
if file != original_file:
|
||||
LOGGER.info(f"PRO TIP 💡 Replace 'model={original_file}' with new 'model={file}'.\nYOLOv5 'u' models are "
|
||||
f"trained with https://github.com/ultralytics/ultralytics and feature improved performance vs "
|
||||
f"standard YOLOv5 models trained with https://github.com/ultralytics/yolov5.\n")
|
||||
|
||||
file = check_yolov5u_filename(file)
|
||||
file = Path(file.strip().replace("'", ''))
|
||||
if file.exists():
|
||||
return str(file)
|
||||
|
@ -23,7 +23,7 @@ class ClassificationPredictor(BasePredictor):
|
||||
results = []
|
||||
for i, pred in enumerate(preds):
|
||||
shape = orig_img[i].shape if isinstance(orig_img, list) else orig_img.shape
|
||||
results.append(Results(probs=pred.softmax(0), orig_shape=shape[:2]))
|
||||
results.append(Results(probs=pred, orig_shape=shape[:2]))
|
||||
return results
|
||||
|
||||
def write_results(self, idx, results, batch):
|
||||
|
Reference in New Issue
Block a user