@ -99,8 +99,8 @@ results = model("https://ultralytics.com/images/bus.jpg") # predict on an image
success = YOLO("yolov8n.pt").export(format="onnx") # export a model to ONNX format
```
[Models ](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/ yolo/v8/ models) download automatically from the latest
Ultralytics [release ](https://github.com/ultralytics/ ultralytic s/releases).
[Models ](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/ models) download automatically from the latest
Ultralytics [release ](https://github.com/ultralytics/ asset s/releases).
### Known Issues / TODOs
@ -116,18 +116,18 @@ We are still working on several parts of YOLOv8! We aim to have these completed
All YOLOv8 pretrained models are available here. Detection and Segmentation models are pretrained on the COCO dataset, while Classification models are pretrained on the ImageNet dataset.
[Models ](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/ yolo/v8/ models) download automatically from the latest
[Models ](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/ models) download automatically from the latest
Ultralytics [release ](https://github.com/ultralytics/ultralytics/releases ) on first use.
< details open > < summary > Detection< / summary >
| Model | size< br > < sup > (pixels) | mAP< sup > val< br > 50-95 | Speed< br > < sup > CPU< br > (ms) | Speed< br > < sup > T4 GPU< br > (ms) | params< br > < sup > (M) | FLOPs< br > < sup > (B) |
| ----------------------------------------------------------------------------------------- | --------------------- | -------------------- | ------------------------- | ---------------------------- | ------------------ | ----------------- |
| [YOLOv8n ](https://github.com/ultralytics/ ultralytics/releases/download/v8 .0.0/yolov8n.pt) | 640 | 37.3 | - | - | 3.2 | 8.7 |
| [YOLOv8s ](https://github.com/ultralytics/ ultralytics/releases/download/v8 .0.0/yolov8s.pt) | 640 | 44.9 | - | - | 11.2 | 28.6 |
| [YOLOv8m ](https://github.com/ultralytics/ ultralytics/releases/download/v8 .0.0/yolov8m.pt) | 640 | 50.2 | - | - | 25.9 | 78.9 |
| [YOLOv8l ](https://github.com/ultralytics/ ultralytics/releases/download/v8 .0.0/yolov8l.pt) | 640 | 52.9 | - | - | 43.7 | 165.2 |
| [YOLOv8x ](https://github.com/ultralytics/ ultralytics/releases/download/v8 .0.0/yolov8x.pt) | 640 | 53.9 | - | - | 68.2 | 257.8 |
| Model | size< br > < sup > (pixels) | mAP< sup > val< br > 50-95 | Speed< br > < sup > CPU< br > (ms) | Speed< br > < sup > T4 GPU< br > (ms) | params< br > < sup > (M) | FLOPs< br > < sup > (B) |
| ------------------------------------------------------------------------------------ | --------------------- | -------------------- | ------------------------- | ---------------------------- | ------------------ | ----------------- |
| [YOLOv8n ](https://github.com/ultralytics/ assets/releases/download/v0 .0.0/yolov8n.pt) | 640 | 37.3 | - | - | 3.2 | 8.7 |
| [YOLOv8s ](https://github.com/ultralytics/ assets/releases/download/v0 .0.0/yolov8s.pt) | 640 | 44.9 | - | - | 11.2 | 28.6 |
| [YOLOv8m ](https://github.com/ultralytics/ assets/releases/download/v0 .0.0/yolov8m.pt) | 640 | 50.2 | - | - | 25.9 | 78.9 |
| [YOLOv8l ](https://github.com/ultralytics/ assets/releases/download/v0 .0.0/yolov8l.pt) | 640 | 52.9 | - | - | 43.7 | 165.2 |
| [YOLOv8x ](https://github.com/ultralytics/ assets/releases/download/v0 .0.0/yolov8x.pt) | 640 | 53.9 | - | - | 68.2 | 257.8 |
- **mAP<sup>val</sup>** values are for single-model single-scale on [COCO val2017 ](http://cocodataset.org ) dataset.
< br > Reproduce by `yolo mode=val task=detect data=coco.yaml device=0`
@ -138,13 +138,13 @@ Ultralytics [release](https://github.com/ultralytics/ultralytics/releases) on fi
< details > < summary > Segmentation< / summary >
| Model | size< br > < sup > (pixels) | mAP< sup > box< br > 50-95 | mAP< sup > mask< br > 50-95 | Speed< br > < sup > CPU< br > (ms) | Speed< br > < sup > T4 GPU< br > (ms) | params< br > < sup > (M) | FLOPs< br > < sup > (B) |
| --------------------------------------------------------------------------------------------- | --------------------- | -------------------- | --------------------- | ------------------------- | ---------------------------- | ------------------ | ----------------- |
| [YOLOv8n ](https://github.com/ultralytics/ ultralytics/releases/download/v8 .0.0/yolov8n-seg.pt) | 640 | 36.7 | 30.5 | - | - | 3.4 | 12.6 |
| [YOLOv8s ](https://github.com/ultralytics/ ultralytics/releases/download/v8 .0.0/yolov8s-seg.pt) | 640 | 44.6 | 36.8 | - | - | 11.8 | 42.6 |
| [YOLOv8m ](https://github.com/ultralytics/ ultralytics/releases/download/v8 .0.0/yolov8m-seg.pt) | 640 | 49.9 | 40.8 | - | - | 27.3 | 110.2 |
| [YOLOv8l ](https://github.com/ultralytics/ ultralytics/releases/download/v8 .0.0/yolov8l-seg.pt) | 640 | 52.3 | 42.6 | - | - | 46.0 | 220.5 |
| [YOLOv8x ](https://github.com/ultralytics/ ultralytics/releases/download/v8 .0.0/yolov8x-seg.pt) | 640 | 53.4 | 43.4 | - | - | 71.8 | 344.1 |
| Model | size< br > < sup > (pixels) | mAP< sup > box< br > 50-95 | mAP< sup > mask< br > 50-95 | Speed< br > < sup > CPU< br > (ms) | Speed< br > < sup > T4 GPU< br > (ms) | params< br > < sup > (M) | FLOPs< br > < sup > (B) |
| ---------------------------------------------------------------------------------------- | --------------------- | -------------------- | --------------------- | ------------------------- | ---------------------------- | ------------------ | ----------------- |
| [YOLOv8n ](https://github.com/ultralytics/ assets/releases/download/v0 .0.0/yolov8n-seg.pt) | 640 | 36.7 | 30.5 | - | - | 3.4 | 12.6 |
| [YOLOv8s ](https://github.com/ultralytics/ assets/releases/download/v0 .0.0/yolov8s-seg.pt) | 640 | 44.6 | 36.8 | - | - | 11.8 | 42.6 |
| [YOLOv8m ](https://github.com/ultralytics/ assets/releases/download/v0 .0.0/yolov8m-seg.pt) | 640 | 49.9 | 40.8 | - | - | 27.3 | 110.2 |
| [YOLOv8l ](https://github.com/ultralytics/ assets/releases/download/v0 .0.0/yolov8l-seg.pt) | 640 | 52.3 | 42.6 | - | - | 46.0 | 220.5 |
| [YOLOv8x ](https://github.com/ultralytics/ assets/releases/download/v0 .0.0/yolov8x-seg.pt) | 640 | 53.4 | 43.4 | - | - | 71.8 | 344.1 |
- **mAP<sup>val</sup>** values are for single-model single-scale on [COCO val2017 ](http://cocodataset.org ) dataset.
< br > Reproduce by `yolo mode=val task=detect data=coco.yaml device=0`
@ -155,13 +155,13 @@ Ultralytics [release](https://github.com/ultralytics/ultralytics/releases) on fi
< details > < summary > Classification< / summary >
| Model | size< br > < sup > (pixels) | acc< br > < sup > top1 | acc< br > < sup > top5 | Speed< br > < sup > CPU< br > (ms) | Speed< br > < sup > T4 GPU< br > (ms) | params< br > < sup > (M) | FLOPs< br > < sup > (B) at 640 |
| --------------------------------------------------------------------------------------------- | --------------------- | ---------------- | ---------------- | ------------------------- | ---------------------------- | ------------------ | ------------------------ |
| [YOLOv8n ](https://github.com/ultralytics/ ultralytics/releases/download/v8 .0.0/yolov8n-cls.pt) | 224 | 66.6 | 87.0 | - | - | 2.7 | 4.3 |
| [YOLOv8s ](https://github.com/ultralytics/ ultralytics/releases/download/v8 .0.0/yolov8s-cls.pt) | 224 | 72.3 | 91.1 | - | - | 6.4 | 13.5 |
| [YOLOv8m ](https://github.com/ultralytics/ ultralytics/releases/download/v8 .0.0/yolov8m-cls.pt) | 224 | 76.4 | 93.2 | - | - | 17.0 | 42.7 |
| [YOLOv8l ](https://github.com/ultralytics/ ultralytics/releases/download/v8 .0.0/yolov8l-cls.pt) | 224 | 78.0 | 94.1 | - | - | 37.5 | 99.7 |
| [YOLOv8x ](https://github.com/ultralytics/ ultralytics/releases/download/v8 .0.0/yolov8x-cls.pt) | 224 | 78.4 | 94.3 | - | - | 57.4 | 154.8 |
| Model | size< br > < sup > (pixels) | acc< br > < sup > top1 | acc< br > < sup > top5 | Speed< br > < sup > CPU< br > (ms) | Speed< br > < sup > T4 GPU< br > (ms) | params< br > < sup > (M) | FLOPs< br > < sup > (B) at 640 |
| ---------------------------------------------------------------------------------------- | --------------------- | ---------------- | ---------------- | ------------------------- | ---------------------------- | ------------------ | ------------------------ |
| [YOLOv8n ](https://github.com/ultralytics/ assets/releases/download/v0 .0.0/yolov8n-cls.pt) | 224 | 66.6 | 87.0 | - | - | 2.7 | 4.3 |
| [YOLOv8s ](https://github.com/ultralytics/ assets/releases/download/v0 .0.0/yolov8s-cls.pt) | 224 | 72.3 | 91.1 | - | - | 6.4 | 13.5 |
| [YOLOv8m ](https://github.com/ultralytics/ assets/releases/download/v0 .0.0/yolov8m-cls.pt) | 224 | 76.4 | 93.2 | - | - | 17.0 | 42.7 |
| [YOLOv8l ](https://github.com/ultralytics/ assets/releases/download/v0 .0.0/yolov8l-cls.pt) | 224 | 78.0 | 94.1 | - | - | 37.5 | 99.7 |
| [YOLOv8x ](https://github.com/ultralytics/ assets/releases/download/v0 .0.0/yolov8x-cls.pt) | 224 | 78.4 | 94.3 | - | - | 57.4 | 154.8 |
- **mAP<sup>val</sup>** values are for single-model single-scale on [ImageNet ](https://www.image-net.org/ ) dataset.
< br > Reproduce by `yolo mode=val task=detect data=coco.yaml device=0`