@ -99,8 +99,8 @@ results = model("https://ultralytics.com/images/bus.jpg") # predict on an image
success = YOLO("yolov8n.pt").export(format="onnx") # export a model to ONNX format
```
[Models ](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/ yolo/v8/ models) download automatically from the latest
Ultralytics [release ](https://github.com/ultralytics/ ultralytic s/releases).
[Models ](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/ models) download automatically from the latest
Ultralytics [release ](https://github.com/ultralytics/ asset s/releases).
### Known Issues / TODOs
@ -116,18 +116,18 @@ We are still working on several parts of YOLOv8! We aim to have these completed
All YOLOv8 pretrained models are available here. Detection and Segmentation models are pretrained on the COCO dataset, while Classification models are pretrained on the ImageNet dataset.
[Models ](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/ yolo/v8/ models) download automatically from the latest
[Models ](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/ models) download automatically from the latest
Ultralytics [release ](https://github.com/ultralytics/ultralytics/releases ) on first use.
< details open > < summary > Detection< / summary >
| Model | size< br > < sup > (pixels) | mAP< sup > val< br > 50-95 | Speed< br > < sup > CPU< br > (ms) | Speed< br > < sup > T4 GPU< br > (ms) | params< br > < sup > (M) | FLOPs< br > < sup > (B) |
| ----------------------------------------------------------------------------------------- | --------------------- | -------------------- | ------------------------- | ---------------------------- | ------------------ | ----------------- |
| [YOLOv8n ](https://github.com/ultralytics/ ultralytics/releases/download/v8 .0.0/yolov8n.pt) | 640 | 37.3 | - | - | 3.2 | 8.7 |
| [YOLOv8s ](https://github.com/ultralytics/ ultralytics/releases/download/v8 .0.0/yolov8s.pt) | 640 | 44.9 | - | - | 11.2 | 28.6 |
| [YOLOv8m ](https://github.com/ultralytics/ ultralytics/releases/download/v8 .0.0/yolov8m.pt) | 640 | 50.2 | - | - | 25.9 | 78.9 |
| [YOLOv8l ](https://github.com/ultralytics/ ultralytics/releases/download/v8 .0.0/yolov8l.pt) | 640 | 52.9 | - | - | 43.7 | 165.2 |
| [YOLOv8x ](https://github.com/ultralytics/ ultralytics/releases/download/v8 .0.0/yolov8x.pt) | 640 | 53.9 | - | - | 68.2 | 257.8 |
| ------------------------------------------------------------------------------------ | --------------------- | -------------------- | ------------------------- | ---------------------------- | ------------------ | ----------------- |
| [YOLOv8n ](https://github.com/ultralytics/ assets/releases/download/v0 .0.0/yolov8n.pt) | 640 | 37.3 | - | - | 3.2 | 8.7 |
| [YOLOv8s ](https://github.com/ultralytics/ assets/releases/download/v0 .0.0/yolov8s.pt) | 640 | 44.9 | - | - | 11.2 | 28.6 |
| [YOLOv8m ](https://github.com/ultralytics/ assets/releases/download/v0 .0.0/yolov8m.pt) | 640 | 50.2 | - | - | 25.9 | 78.9 |
| [YOLOv8l ](https://github.com/ultralytics/ assets/releases/download/v0 .0.0/yolov8l.pt) | 640 | 52.9 | - | - | 43.7 | 165.2 |
| [YOLOv8x ](https://github.com/ultralytics/ assets/releases/download/v0 .0.0/yolov8x.pt) | 640 | 53.9 | - | - | 68.2 | 257.8 |
- **mAP<sup>val</sup>** values are for single-model single-scale on [COCO val2017 ](http://cocodataset.org ) dataset.
< br > Reproduce by `yolo mode=val task=detect data=coco.yaml device=0`
@ -139,12 +139,12 @@ Ultralytics [release](https://github.com/ultralytics/ultralytics/releases) on fi
< details > < summary > Segmentation< / summary >
| Model | size< br > < sup > (pixels) | mAP< sup > box< br > 50-95 | mAP< sup > mask< br > 50-95 | Speed< br > < sup > CPU< br > (ms) | Speed< br > < sup > T4 GPU< br > (ms) | params< br > < sup > (M) | FLOPs< br > < sup > (B) |
| --------------------------------------------------------------------------------------------- | --------------------- | -------------------- | --------------------- | ------------------------- | ---------------------------- | ------------------ | ----------------- |
| [YOLOv8n ](https://github.com/ultralytics/ ultralytics/releases/download/v8 .0.0/yolov8n-seg.pt) | 640 | 36.7 | 30.5 | - | - | 3.4 | 12.6 |
| [YOLOv8s ](https://github.com/ultralytics/ ultralytics/releases/download/v8 .0.0/yolov8s-seg.pt) | 640 | 44.6 | 36.8 | - | - | 11.8 | 42.6 |
| [YOLOv8m ](https://github.com/ultralytics/ ultralytics/releases/download/v8 .0.0/yolov8m-seg.pt) | 640 | 49.9 | 40.8 | - | - | 27.3 | 110.2 |
| [YOLOv8l ](https://github.com/ultralytics/ ultralytics/releases/download/v8 .0.0/yolov8l-seg.pt) | 640 | 52.3 | 42.6 | - | - | 46.0 | 220.5 |
| [YOLOv8x ](https://github.com/ultralytics/ ultralytics/releases/download/v8 .0.0/yolov8x-seg.pt) | 640 | 53.4 | 43.4 | - | - | 71.8 | 344.1 |
| ---------------------------------------------------------------------------------------- | --------------------- | -------------------- | --------------------- | ------------------------- | ---------------------------- | ------------------ | ----------------- |
| [YOLOv8n ](https://github.com/ultralytics/ assets/releases/download/v0 .0.0/yolov8n-seg.pt) | 640 | 36.7 | 30.5 | - | - | 3.4 | 12.6 |
| [YOLOv8s ](https://github.com/ultralytics/ assets/releases/download/v0 .0.0/yolov8s-seg.pt) | 640 | 44.6 | 36.8 | - | - | 11.8 | 42.6 |
| [YOLOv8m ](https://github.com/ultralytics/ assets/releases/download/v0 .0.0/yolov8m-seg.pt) | 640 | 49.9 | 40.8 | - | - | 27.3 | 110.2 |
| [YOLOv8l ](https://github.com/ultralytics/ assets/releases/download/v0 .0.0/yolov8l-seg.pt) | 640 | 52.3 | 42.6 | - | - | 46.0 | 220.5 |
| [YOLOv8x ](https://github.com/ultralytics/ assets/releases/download/v0 .0.0/yolov8x-seg.pt) | 640 | 53.4 | 43.4 | - | - | 71.8 | 344.1 |
- **mAP<sup>val</sup>** values are for single-model single-scale on [COCO val2017 ](http://cocodataset.org ) dataset.
< br > Reproduce by `yolo mode=val task=detect data=coco.yaml device=0`
@ -156,12 +156,12 @@ Ultralytics [release](https://github.com/ultralytics/ultralytics/releases) on fi
< details > < summary > Classification< / summary >
| Model | size< br > < sup > (pixels) | acc< br > < sup > top1 | acc< br > < sup > top5 | Speed< br > < sup > CPU< br > (ms) | Speed< br > < sup > T4 GPU< br > (ms) | params< br > < sup > (M) | FLOPs< br > < sup > (B) at 640 |
| --------------------------------------------------------------------------------------------- | --------------------- | ---------------- | ---------------- | ------------------------- | ---------------------------- | ------------------ | ------------------------ |
| [YOLOv8n ](https://github.com/ultralytics/ ultralytics/releases/download/v8 .0.0/yolov8n-cls.pt) | 224 | 66.6 | 87.0 | - | - | 2.7 | 4.3 |
| [YOLOv8s ](https://github.com/ultralytics/ ultralytics/releases/download/v8 .0.0/yolov8s-cls.pt) | 224 | 72.3 | 91.1 | - | - | 6.4 | 13.5 |
| [YOLOv8m ](https://github.com/ultralytics/ ultralytics/releases/download/v8 .0.0/yolov8m-cls.pt) | 224 | 76.4 | 93.2 | - | - | 17.0 | 42.7 |
| [YOLOv8l ](https://github.com/ultralytics/ ultralytics/releases/download/v8 .0.0/yolov8l-cls.pt) | 224 | 78.0 | 94.1 | - | - | 37.5 | 99.7 |
| [YOLOv8x ](https://github.com/ultralytics/ ultralytics/releases/download/v8 .0.0/yolov8x-cls.pt) | 224 | 78.4 | 94.3 | - | - | 57.4 | 154.8 |
| ---------------------------------------------------------------------------------------- | --------------------- | ---------------- | ---------------- | ------------------------- | ---------------------------- | ------------------ | ------------------------ |
| [YOLOv8n ](https://github.com/ultralytics/ assets/releases/download/v0 .0.0/yolov8n-cls.pt) | 224 | 66.6 | 87.0 | - | - | 2.7 | 4.3 |
| [YOLOv8s ](https://github.com/ultralytics/ assets/releases/download/v0 .0.0/yolov8s-cls.pt) | 224 | 72.3 | 91.1 | - | - | 6.4 | 13.5 |
| [YOLOv8m ](https://github.com/ultralytics/ assets/releases/download/v0 .0.0/yolov8m-cls.pt) | 224 | 76.4 | 93.2 | - | - | 17.0 | 42.7 |
| [YOLOv8l ](https://github.com/ultralytics/ assets/releases/download/v0 .0.0/yolov8l-cls.pt) | 224 | 78.0 | 94.1 | - | - | 37.5 | 99.7 |
| [YOLOv8x ](https://github.com/ultralytics/ assets/releases/download/v0 .0.0/yolov8x-cls.pt) | 224 | 78.4 | 94.3 | - | - | 57.4 | 154.8 |
- **mAP<sup>val</sup>** values are for single-model single-scale on [ImageNet ](https://www.image-net.org/ ) dataset.
< br > Reproduce by `yolo mode=val task=detect data=coco.yaml device=0`