Release 8.0.4 fixes (#256)
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com> Co-authored-by: Laughing <61612323+Laughing-q@users.noreply.github.com> Co-authored-by: TechieG <35962141+gokulnath30@users.noreply.github.com> Co-authored-by: Parthiban Marimuthu <66585214+partheee@users.noreply.github.com>
This commit is contained in:
@ -39,7 +39,8 @@ class ClassificationPredictor(BasePredictor):
|
||||
self.annotator = self.get_annotator(im0)
|
||||
|
||||
prob = preds[idx].softmax(0)
|
||||
self.all_outputs.append(prob)
|
||||
if self.return_outputs:
|
||||
self.output["prob"] = prob.cpu().numpy()
|
||||
# Print results
|
||||
top5i = prob.argsort(0, descending=True)[:5].tolist() # top 5 indices
|
||||
log_string += f"{', '.join(f'{self.model.names[j]} {prob[j]:.2f}' for j in top5i)}, "
|
||||
@ -62,7 +63,7 @@ def predict(cfg):
|
||||
cfg.source = cfg.source if cfg.source is not None else ROOT / "assets"
|
||||
|
||||
predictor = ClassificationPredictor(cfg)
|
||||
predictor()
|
||||
predictor.predict_cli()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
@ -143,6 +143,7 @@ def train(cfg):
|
||||
cfg.weight_decay = 5e-5
|
||||
cfg.label_smoothing = 0.1
|
||||
cfg.warmup_epochs = 0.0
|
||||
cfg.device = cfg.device if cfg.device is not None else ''
|
||||
# trainer = ClassificationTrainer(cfg)
|
||||
# trainer.train()
|
||||
from ultralytics import YOLO
|
||||
|
@ -53,12 +53,15 @@ class DetectionPredictor(BasePredictor):
|
||||
self.annotator = self.get_annotator(im0)
|
||||
|
||||
det = preds[idx]
|
||||
self.all_outputs.append(det)
|
||||
if len(det) == 0:
|
||||
return log_string
|
||||
for c in det[:, 5].unique():
|
||||
n = (det[:, 5] == c).sum() # detections per class
|
||||
log_string += f"{n} {self.model.names[int(c)]}{'s' * (n > 1)}, "
|
||||
|
||||
if self.return_outputs:
|
||||
self.output["det"] = det.cpu().numpy()
|
||||
|
||||
# write
|
||||
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
|
||||
for *xyxy, conf, cls in reversed(det):
|
||||
@ -89,7 +92,7 @@ def predict(cfg):
|
||||
cfg.imgsz = check_imgsz(cfg.imgsz, min_dim=2) # check image size
|
||||
cfg.source = cfg.source if cfg.source is not None else ROOT / "assets"
|
||||
predictor = DetectionPredictor(cfg)
|
||||
predictor()
|
||||
predictor.predict_cli()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
@ -199,6 +199,7 @@ class Loss:
|
||||
def train(cfg):
|
||||
cfg.model = cfg.model or "yolov8n.yaml"
|
||||
cfg.data = cfg.data or "coco128.yaml" # or yolo.ClassificationDataset("mnist")
|
||||
cfg.device = cfg.device if cfg.device is not None else ''
|
||||
# trainer = DetectionTrainer(cfg)
|
||||
# trainer.train()
|
||||
from ultralytics import YOLO
|
||||
|
@ -58,10 +58,10 @@ class SegmentationPredictor(DetectionPredictor):
|
||||
return log_string
|
||||
# Segments
|
||||
mask = masks[idx]
|
||||
if self.args.save_txt:
|
||||
if self.args.save_txt or self.return_outputs:
|
||||
shape = im0.shape if self.args.retina_masks else im.shape[2:]
|
||||
segments = [
|
||||
ops.scale_segments(im0.shape if self.args.retina_masks else im.shape[2:], x, im0.shape, normalize=True)
|
||||
for x in reversed(ops.masks2segments(mask))]
|
||||
ops.scale_segments(shape, x, im0.shape, normalize=False) for x in reversed(ops.masks2segments(mask))]
|
||||
|
||||
# Print results
|
||||
for c in det[:, 5].unique():
|
||||
@ -76,12 +76,17 @@ class SegmentationPredictor(DetectionPredictor):
|
||||
255 if self.args.retina_masks else im[idx])
|
||||
|
||||
det = reversed(det[:, :6])
|
||||
self.all_outputs.append([det, mask])
|
||||
if self.return_outputs:
|
||||
self.output["det"] = det.cpu().numpy()
|
||||
self.output["segment"] = segments
|
||||
|
||||
# Write results
|
||||
for j, (*xyxy, conf, cls) in enumerate(reversed(det[:, :6])):
|
||||
for j, (*xyxy, conf, cls) in enumerate(det):
|
||||
if self.args.save_txt: # Write to file
|
||||
seg = segments[j].reshape(-1) # (n,2) to (n*2)
|
||||
seg = segments[j].copy()
|
||||
seg[:, 0] /= shape[1] # width
|
||||
seg[:, 1] /= shape[0] # height
|
||||
seg = seg.reshape(-1) # (n,2) to (n*2)
|
||||
line = (cls, *seg, conf) if self.args.save_conf else (cls, *seg) # label format
|
||||
with open(f'{self.txt_path}.txt', 'a') as f:
|
||||
f.write(('%g ' * len(line)).rstrip() % line + '\n')
|
||||
@ -106,7 +111,7 @@ def predict(cfg):
|
||||
cfg.source = cfg.source if cfg.source is not None else ROOT / "assets"
|
||||
|
||||
predictor = SegmentationPredictor(cfg)
|
||||
predictor()
|
||||
predictor.predict_cli()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
@ -144,6 +144,7 @@ class SegLoss(Loss):
|
||||
def train(cfg):
|
||||
cfg.model = cfg.model or "yolov8n-seg.yaml"
|
||||
cfg.data = cfg.data or "coco128-seg.yaml" # or yolo.ClassificationDataset("mnist")
|
||||
cfg.device = cfg.device if cfg.device is not None else ''
|
||||
# trainer = SegmentationTrainer(cfg)
|
||||
# trainer.train()
|
||||
from ultralytics import YOLO
|
||||
|
Reference in New Issue
Block a user