Release 8.0.4 fixes (#256)

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
Co-authored-by: Laughing <61612323+Laughing-q@users.noreply.github.com>
Co-authored-by: TechieG <35962141+gokulnath30@users.noreply.github.com>
Co-authored-by: Parthiban Marimuthu <66585214+partheee@users.noreply.github.com>
This commit is contained in:
Ayush Chaurasia
2023-01-11 23:09:52 +05:30
committed by GitHub
parent f5dfd5be8b
commit 216cf2ddb6
18 changed files with 96 additions and 67 deletions

View File

@ -111,7 +111,7 @@ class YOLO:
self.model.fuse()
@smart_inference_mode()
def predict(self, source, **kwargs):
def predict(self, source, return_outputs=True, **kwargs):
"""
Visualize prediction.
@ -127,8 +127,8 @@ class YOLO:
predictor = self.PredictorClass(overrides=overrides)
predictor.args.imgsz = check_imgsz(predictor.args.imgsz, min_dim=2) # check image size
predictor.setup(model=self.model, source=source)
return predictor()
predictor.setup(model=self.model, source=source, return_outputs=return_outputs)
return predictor() if return_outputs else predictor.predict_cli()
@smart_inference_mode()
def val(self, data=None, **kwargs):
@ -212,10 +212,12 @@ class YOLO:
@staticmethod
def _reset_ckpt_args(args):
args.pop("device", None)
args.pop("project", None)
args.pop("name", None)
args.pop("batch", None)
args.pop("epochs", None)
args.pop("cache", None)
args.pop("save_json", None)
# set device to '' to prevent from auto DDP usage
args["device"] = ''

View File

@ -89,6 +89,7 @@ class BasePredictor:
self.vid_path, self.vid_writer = None, None
self.annotator = None
self.data_path = None
self.output = dict()
self.callbacks = defaultdict(list, {k: [v] for k, v in callbacks.default_callbacks.items()}) # add callbacks
callbacks.add_integration_callbacks(self)
@ -104,7 +105,7 @@ class BasePredictor:
def postprocess(self, preds, img, orig_img):
return preds
def setup(self, source=None, model=None):
def setup(self, source=None, model=None, return_outputs=True):
# source
source = str(source if source is not None else self.args.source)
is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS)
@ -155,16 +156,16 @@ class BasePredictor:
self.imgsz = imgsz
self.done_setup = True
self.device = device
self.return_outputs = return_outputs
return model
@smart_inference_mode()
def __call__(self, source=None, model=None):
def __call__(self, source=None, model=None, return_outputs=True):
self.run_callbacks("on_predict_start")
model = self.model if self.done_setup else self.setup(source, model)
model = self.model if self.done_setup else self.setup(source, model, return_outputs)
model.eval()
self.seen, self.windows, self.dt = 0, [], (ops.Profile(), ops.Profile(), ops.Profile())
self.all_outputs = []
for batch in self.dataset:
self.run_callbacks("on_predict_batch_start")
path, im, im0s, vid_cap, s = batch
@ -194,6 +195,10 @@ class BasePredictor:
if self.args.save:
self.save_preds(vid_cap, i, str(self.save_dir / p.name))
if self.return_outputs:
yield self.output
self.output.clear()
# Print time (inference-only)
LOGGER.info(f"{s}{'' if len(preds) else '(no detections), '}{self.dt[1].dt * 1E3:.1f}ms")
@ -209,7 +214,11 @@ class BasePredictor:
LOGGER.info(f"Results saved to {colorstr('bold', self.save_dir)}{s}")
self.run_callbacks("on_predict_end")
return self.all_outputs
def predict_cli(self, source=None, model=None, return_outputs=False):
# as __call__ is a genertor now so have to treat it like a genertor
for _ in (self.__call__(source, model, return_outputs)):
pass
def show(self, p):
im0 = self.annotator.result()