Release 8.0.4 fixes (#256)

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
Co-authored-by: Laughing <61612323+Laughing-q@users.noreply.github.com>
Co-authored-by: TechieG <35962141+gokulnath30@users.noreply.github.com>
Co-authored-by: Parthiban Marimuthu <66585214+partheee@users.noreply.github.com>
This commit is contained in:
Ayush Chaurasia
2023-01-11 23:09:52 +05:30
committed by GitHub
parent f5dfd5be8b
commit 216cf2ddb6
18 changed files with 96 additions and 67 deletions

View File

@ -56,6 +56,7 @@ class AutoBackend(nn.Module):
fp16 &= pt or jit or onnx or engine or nn_module # FP16
nhwc = coreml or saved_model or pb or tflite or edgetpu # BHWC formats (vs torch BCWH)
stride = 32 # default stride
model = None # TODO: resolves ONNX inference, verify effect on other backends
cuda = torch.cuda.is_available() and device.type != 'cpu' # use CUDA
if not (pt or triton or nn_module):
w = attempt_download(w) # download if not local

View File

@ -6,6 +6,7 @@ from pathlib import Path
import hydra
from ultralytics import hub, yolo
from ultralytics.yolo.configs import get_config
from ultralytics.yolo.utils import DEFAULT_CONFIG, LOGGER, colorstr
DIR = Path(__file__).parent
@ -20,6 +21,9 @@ def cli(cfg):
cfg (DictConfig): Configuration for the task and mode.
"""
# LOGGER.info(f"{colorstr(f'Ultralytics YOLO v{ultralytics.__version__}')}")
if cfg.cfg:
LOGGER.info(f"Overriding default config with {cfg.cfg}")
cfg = get_config(cfg.cfg)
task, mode = cfg.task.lower(), cfg.mode.lower()
# Special case for initializing the configuration
@ -28,7 +32,7 @@ def cli(cfg):
LOGGER.info(f"""
{colorstr("YOLO:")} configuration saved to {Path.cwd() / DEFAULT_CONFIG.name}.
To run experiments using custom configuration:
yolo task='task' mode='mode' --config-name config_file.yaml
yolo cfg=config_file.yaml
""")
return

View File

@ -101,6 +101,7 @@ mixup: 0.0 # image mixup (probability)
copy_paste: 0.0 # segment copy-paste (probability)
# Hydra configs --------------------------------------------------------------------------------------------------------
cfg: null # for overriding defaults.yaml
hydra:
output_subdir: null # disable hydra directory creation
run:

View File

@ -111,7 +111,7 @@ class YOLO:
self.model.fuse()
@smart_inference_mode()
def predict(self, source, **kwargs):
def predict(self, source, return_outputs=True, **kwargs):
"""
Visualize prediction.
@ -127,8 +127,8 @@ class YOLO:
predictor = self.PredictorClass(overrides=overrides)
predictor.args.imgsz = check_imgsz(predictor.args.imgsz, min_dim=2) # check image size
predictor.setup(model=self.model, source=source)
return predictor()
predictor.setup(model=self.model, source=source, return_outputs=return_outputs)
return predictor() if return_outputs else predictor.predict_cli()
@smart_inference_mode()
def val(self, data=None, **kwargs):
@ -212,10 +212,12 @@ class YOLO:
@staticmethod
def _reset_ckpt_args(args):
args.pop("device", None)
args.pop("project", None)
args.pop("name", None)
args.pop("batch", None)
args.pop("epochs", None)
args.pop("cache", None)
args.pop("save_json", None)
# set device to '' to prevent from auto DDP usage
args["device"] = ''

View File

@ -89,6 +89,7 @@ class BasePredictor:
self.vid_path, self.vid_writer = None, None
self.annotator = None
self.data_path = None
self.output = dict()
self.callbacks = defaultdict(list, {k: [v] for k, v in callbacks.default_callbacks.items()}) # add callbacks
callbacks.add_integration_callbacks(self)
@ -104,7 +105,7 @@ class BasePredictor:
def postprocess(self, preds, img, orig_img):
return preds
def setup(self, source=None, model=None):
def setup(self, source=None, model=None, return_outputs=True):
# source
source = str(source if source is not None else self.args.source)
is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS)
@ -155,16 +156,16 @@ class BasePredictor:
self.imgsz = imgsz
self.done_setup = True
self.device = device
self.return_outputs = return_outputs
return model
@smart_inference_mode()
def __call__(self, source=None, model=None):
def __call__(self, source=None, model=None, return_outputs=True):
self.run_callbacks("on_predict_start")
model = self.model if self.done_setup else self.setup(source, model)
model = self.model if self.done_setup else self.setup(source, model, return_outputs)
model.eval()
self.seen, self.windows, self.dt = 0, [], (ops.Profile(), ops.Profile(), ops.Profile())
self.all_outputs = []
for batch in self.dataset:
self.run_callbacks("on_predict_batch_start")
path, im, im0s, vid_cap, s = batch
@ -194,6 +195,10 @@ class BasePredictor:
if self.args.save:
self.save_preds(vid_cap, i, str(self.save_dir / p.name))
if self.return_outputs:
yield self.output
self.output.clear()
# Print time (inference-only)
LOGGER.info(f"{s}{'' if len(preds) else '(no detections), '}{self.dt[1].dt * 1E3:.1f}ms")
@ -209,7 +214,11 @@ class BasePredictor:
LOGGER.info(f"Results saved to {colorstr('bold', self.save_dir)}{s}")
self.run_callbacks("on_predict_end")
return self.all_outputs
def predict_cli(self, source=None, model=None, return_outputs=False):
# as __call__ is a genertor now so have to treat it like a genertor
for _ in (self.__call__(source, model, return_outputs)):
pass
def show(self, p):
im0 = self.annotator.result()

View File

@ -70,7 +70,7 @@ def select_device(device='', batch_size=0, newline=False):
elif device: # non-cpu device requested
os.environ['CUDA_VISIBLE_DEVICES'] = device # set environment variable - must be before assert is_available()
assert torch.cuda.is_available() and torch.cuda.device_count() >= len(device.replace(',', '')), \
f"Invalid CUDA '--device {device}' requested, use '--device cpu' or pass valid CUDA device(s)"
f"Invalid CUDA 'device={device}' requested, use 'device=cpu' or pass valid CUDA device(s)"
if not cpu and not mps and torch.cuda.is_available(): # prefer GPU if available
devices = device.split(',') if device else '0' # range(torch.cuda.device_count()) # i.e. 0,1,6,7

View File

@ -39,7 +39,8 @@ class ClassificationPredictor(BasePredictor):
self.annotator = self.get_annotator(im0)
prob = preds[idx].softmax(0)
self.all_outputs.append(prob)
if self.return_outputs:
self.output["prob"] = prob.cpu().numpy()
# Print results
top5i = prob.argsort(0, descending=True)[:5].tolist() # top 5 indices
log_string += f"{', '.join(f'{self.model.names[j]} {prob[j]:.2f}' for j in top5i)}, "
@ -62,7 +63,7 @@ def predict(cfg):
cfg.source = cfg.source if cfg.source is not None else ROOT / "assets"
predictor = ClassificationPredictor(cfg)
predictor()
predictor.predict_cli()
if __name__ == "__main__":

View File

@ -143,6 +143,7 @@ def train(cfg):
cfg.weight_decay = 5e-5
cfg.label_smoothing = 0.1
cfg.warmup_epochs = 0.0
cfg.device = cfg.device if cfg.device is not None else ''
# trainer = ClassificationTrainer(cfg)
# trainer.train()
from ultralytics import YOLO

View File

@ -53,12 +53,15 @@ class DetectionPredictor(BasePredictor):
self.annotator = self.get_annotator(im0)
det = preds[idx]
self.all_outputs.append(det)
if len(det) == 0:
return log_string
for c in det[:, 5].unique():
n = (det[:, 5] == c).sum() # detections per class
log_string += f"{n} {self.model.names[int(c)]}{'s' * (n > 1)}, "
if self.return_outputs:
self.output["det"] = det.cpu().numpy()
# write
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
for *xyxy, conf, cls in reversed(det):
@ -89,7 +92,7 @@ def predict(cfg):
cfg.imgsz = check_imgsz(cfg.imgsz, min_dim=2) # check image size
cfg.source = cfg.source if cfg.source is not None else ROOT / "assets"
predictor = DetectionPredictor(cfg)
predictor()
predictor.predict_cli()
if __name__ == "__main__":

View File

@ -199,6 +199,7 @@ class Loss:
def train(cfg):
cfg.model = cfg.model or "yolov8n.yaml"
cfg.data = cfg.data or "coco128.yaml" # or yolo.ClassificationDataset("mnist")
cfg.device = cfg.device if cfg.device is not None else ''
# trainer = DetectionTrainer(cfg)
# trainer.train()
from ultralytics import YOLO

View File

@ -58,10 +58,10 @@ class SegmentationPredictor(DetectionPredictor):
return log_string
# Segments
mask = masks[idx]
if self.args.save_txt:
if self.args.save_txt or self.return_outputs:
shape = im0.shape if self.args.retina_masks else im.shape[2:]
segments = [
ops.scale_segments(im0.shape if self.args.retina_masks else im.shape[2:], x, im0.shape, normalize=True)
for x in reversed(ops.masks2segments(mask))]
ops.scale_segments(shape, x, im0.shape, normalize=False) for x in reversed(ops.masks2segments(mask))]
# Print results
for c in det[:, 5].unique():
@ -76,12 +76,17 @@ class SegmentationPredictor(DetectionPredictor):
255 if self.args.retina_masks else im[idx])
det = reversed(det[:, :6])
self.all_outputs.append([det, mask])
if self.return_outputs:
self.output["det"] = det.cpu().numpy()
self.output["segment"] = segments
# Write results
for j, (*xyxy, conf, cls) in enumerate(reversed(det[:, :6])):
for j, (*xyxy, conf, cls) in enumerate(det):
if self.args.save_txt: # Write to file
seg = segments[j].reshape(-1) # (n,2) to (n*2)
seg = segments[j].copy()
seg[:, 0] /= shape[1] # width
seg[:, 1] /= shape[0] # height
seg = seg.reshape(-1) # (n,2) to (n*2)
line = (cls, *seg, conf) if self.args.save_conf else (cls, *seg) # label format
with open(f'{self.txt_path}.txt', 'a') as f:
f.write(('%g ' * len(line)).rstrip() % line + '\n')
@ -106,7 +111,7 @@ def predict(cfg):
cfg.source = cfg.source if cfg.source is not None else ROOT / "assets"
predictor = SegmentationPredictor(cfg)
predictor()
predictor.predict_cli()
if __name__ == "__main__":

View File

@ -144,6 +144,7 @@ class SegLoss(Loss):
def train(cfg):
cfg.model = cfg.model or "yolov8n-seg.yaml"
cfg.data = cfg.data or "coco128-seg.yaml" # or yolo.ClassificationDataset("mnist")
cfg.device = cfg.device if cfg.device is not None else ''
# trainer = SegmentationTrainer(cfg)
# trainer.train()
from ultralytics import YOLO