Release 8.0.4 fixes (#256)
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com> Co-authored-by: Laughing <61612323+Laughing-q@users.noreply.github.com> Co-authored-by: TechieG <35962141+gokulnath30@users.noreply.github.com> Co-authored-by: Parthiban Marimuthu <66585214+partheee@users.noreply.github.com>
This commit is contained in:
@ -56,6 +56,7 @@ class AutoBackend(nn.Module):
|
||||
fp16 &= pt or jit or onnx or engine or nn_module # FP16
|
||||
nhwc = coreml or saved_model or pb or tflite or edgetpu # BHWC formats (vs torch BCWH)
|
||||
stride = 32 # default stride
|
||||
model = None # TODO: resolves ONNX inference, verify effect on other backends
|
||||
cuda = torch.cuda.is_available() and device.type != 'cpu' # use CUDA
|
||||
if not (pt or triton or nn_module):
|
||||
w = attempt_download(w) # download if not local
|
||||
|
@ -6,6 +6,7 @@ from pathlib import Path
|
||||
import hydra
|
||||
|
||||
from ultralytics import hub, yolo
|
||||
from ultralytics.yolo.configs import get_config
|
||||
from ultralytics.yolo.utils import DEFAULT_CONFIG, LOGGER, colorstr
|
||||
|
||||
DIR = Path(__file__).parent
|
||||
@ -20,6 +21,9 @@ def cli(cfg):
|
||||
cfg (DictConfig): Configuration for the task and mode.
|
||||
"""
|
||||
# LOGGER.info(f"{colorstr(f'Ultralytics YOLO v{ultralytics.__version__}')}")
|
||||
if cfg.cfg:
|
||||
LOGGER.info(f"Overriding default config with {cfg.cfg}")
|
||||
cfg = get_config(cfg.cfg)
|
||||
task, mode = cfg.task.lower(), cfg.mode.lower()
|
||||
|
||||
# Special case for initializing the configuration
|
||||
@ -28,7 +32,7 @@ def cli(cfg):
|
||||
LOGGER.info(f"""
|
||||
{colorstr("YOLO:")} configuration saved to {Path.cwd() / DEFAULT_CONFIG.name}.
|
||||
To run experiments using custom configuration:
|
||||
yolo task='task' mode='mode' --config-name config_file.yaml
|
||||
yolo cfg=config_file.yaml
|
||||
""")
|
||||
return
|
||||
|
||||
|
@ -101,6 +101,7 @@ mixup: 0.0 # image mixup (probability)
|
||||
copy_paste: 0.0 # segment copy-paste (probability)
|
||||
|
||||
# Hydra configs --------------------------------------------------------------------------------------------------------
|
||||
cfg: null # for overriding defaults.yaml
|
||||
hydra:
|
||||
output_subdir: null # disable hydra directory creation
|
||||
run:
|
||||
|
@ -111,7 +111,7 @@ class YOLO:
|
||||
self.model.fuse()
|
||||
|
||||
@smart_inference_mode()
|
||||
def predict(self, source, **kwargs):
|
||||
def predict(self, source, return_outputs=True, **kwargs):
|
||||
"""
|
||||
Visualize prediction.
|
||||
|
||||
@ -127,8 +127,8 @@ class YOLO:
|
||||
predictor = self.PredictorClass(overrides=overrides)
|
||||
|
||||
predictor.args.imgsz = check_imgsz(predictor.args.imgsz, min_dim=2) # check image size
|
||||
predictor.setup(model=self.model, source=source)
|
||||
return predictor()
|
||||
predictor.setup(model=self.model, source=source, return_outputs=return_outputs)
|
||||
return predictor() if return_outputs else predictor.predict_cli()
|
||||
|
||||
@smart_inference_mode()
|
||||
def val(self, data=None, **kwargs):
|
||||
@ -212,10 +212,12 @@ class YOLO:
|
||||
|
||||
@staticmethod
|
||||
def _reset_ckpt_args(args):
|
||||
args.pop("device", None)
|
||||
args.pop("project", None)
|
||||
args.pop("name", None)
|
||||
args.pop("batch", None)
|
||||
args.pop("epochs", None)
|
||||
args.pop("cache", None)
|
||||
args.pop("save_json", None)
|
||||
|
||||
# set device to '' to prevent from auto DDP usage
|
||||
args["device"] = ''
|
||||
|
@ -89,6 +89,7 @@ class BasePredictor:
|
||||
self.vid_path, self.vid_writer = None, None
|
||||
self.annotator = None
|
||||
self.data_path = None
|
||||
self.output = dict()
|
||||
self.callbacks = defaultdict(list, {k: [v] for k, v in callbacks.default_callbacks.items()}) # add callbacks
|
||||
callbacks.add_integration_callbacks(self)
|
||||
|
||||
@ -104,7 +105,7 @@ class BasePredictor:
|
||||
def postprocess(self, preds, img, orig_img):
|
||||
return preds
|
||||
|
||||
def setup(self, source=None, model=None):
|
||||
def setup(self, source=None, model=None, return_outputs=True):
|
||||
# source
|
||||
source = str(source if source is not None else self.args.source)
|
||||
is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS)
|
||||
@ -155,16 +156,16 @@ class BasePredictor:
|
||||
self.imgsz = imgsz
|
||||
self.done_setup = True
|
||||
self.device = device
|
||||
self.return_outputs = return_outputs
|
||||
|
||||
return model
|
||||
|
||||
@smart_inference_mode()
|
||||
def __call__(self, source=None, model=None):
|
||||
def __call__(self, source=None, model=None, return_outputs=True):
|
||||
self.run_callbacks("on_predict_start")
|
||||
model = self.model if self.done_setup else self.setup(source, model)
|
||||
model = self.model if self.done_setup else self.setup(source, model, return_outputs)
|
||||
model.eval()
|
||||
self.seen, self.windows, self.dt = 0, [], (ops.Profile(), ops.Profile(), ops.Profile())
|
||||
self.all_outputs = []
|
||||
for batch in self.dataset:
|
||||
self.run_callbacks("on_predict_batch_start")
|
||||
path, im, im0s, vid_cap, s = batch
|
||||
@ -194,6 +195,10 @@ class BasePredictor:
|
||||
if self.args.save:
|
||||
self.save_preds(vid_cap, i, str(self.save_dir / p.name))
|
||||
|
||||
if self.return_outputs:
|
||||
yield self.output
|
||||
self.output.clear()
|
||||
|
||||
# Print time (inference-only)
|
||||
LOGGER.info(f"{s}{'' if len(preds) else '(no detections), '}{self.dt[1].dt * 1E3:.1f}ms")
|
||||
|
||||
@ -209,7 +214,11 @@ class BasePredictor:
|
||||
LOGGER.info(f"Results saved to {colorstr('bold', self.save_dir)}{s}")
|
||||
|
||||
self.run_callbacks("on_predict_end")
|
||||
return self.all_outputs
|
||||
|
||||
def predict_cli(self, source=None, model=None, return_outputs=False):
|
||||
# as __call__ is a genertor now so have to treat it like a genertor
|
||||
for _ in (self.__call__(source, model, return_outputs)):
|
||||
pass
|
||||
|
||||
def show(self, p):
|
||||
im0 = self.annotator.result()
|
||||
|
@ -70,7 +70,7 @@ def select_device(device='', batch_size=0, newline=False):
|
||||
elif device: # non-cpu device requested
|
||||
os.environ['CUDA_VISIBLE_DEVICES'] = device # set environment variable - must be before assert is_available()
|
||||
assert torch.cuda.is_available() and torch.cuda.device_count() >= len(device.replace(',', '')), \
|
||||
f"Invalid CUDA '--device {device}' requested, use '--device cpu' or pass valid CUDA device(s)"
|
||||
f"Invalid CUDA 'device={device}' requested, use 'device=cpu' or pass valid CUDA device(s)"
|
||||
|
||||
if not cpu and not mps and torch.cuda.is_available(): # prefer GPU if available
|
||||
devices = device.split(',') if device else '0' # range(torch.cuda.device_count()) # i.e. 0,1,6,7
|
||||
|
@ -39,7 +39,8 @@ class ClassificationPredictor(BasePredictor):
|
||||
self.annotator = self.get_annotator(im0)
|
||||
|
||||
prob = preds[idx].softmax(0)
|
||||
self.all_outputs.append(prob)
|
||||
if self.return_outputs:
|
||||
self.output["prob"] = prob.cpu().numpy()
|
||||
# Print results
|
||||
top5i = prob.argsort(0, descending=True)[:5].tolist() # top 5 indices
|
||||
log_string += f"{', '.join(f'{self.model.names[j]} {prob[j]:.2f}' for j in top5i)}, "
|
||||
@ -62,7 +63,7 @@ def predict(cfg):
|
||||
cfg.source = cfg.source if cfg.source is not None else ROOT / "assets"
|
||||
|
||||
predictor = ClassificationPredictor(cfg)
|
||||
predictor()
|
||||
predictor.predict_cli()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
@ -143,6 +143,7 @@ def train(cfg):
|
||||
cfg.weight_decay = 5e-5
|
||||
cfg.label_smoothing = 0.1
|
||||
cfg.warmup_epochs = 0.0
|
||||
cfg.device = cfg.device if cfg.device is not None else ''
|
||||
# trainer = ClassificationTrainer(cfg)
|
||||
# trainer.train()
|
||||
from ultralytics import YOLO
|
||||
|
@ -53,12 +53,15 @@ class DetectionPredictor(BasePredictor):
|
||||
self.annotator = self.get_annotator(im0)
|
||||
|
||||
det = preds[idx]
|
||||
self.all_outputs.append(det)
|
||||
if len(det) == 0:
|
||||
return log_string
|
||||
for c in det[:, 5].unique():
|
||||
n = (det[:, 5] == c).sum() # detections per class
|
||||
log_string += f"{n} {self.model.names[int(c)]}{'s' * (n > 1)}, "
|
||||
|
||||
if self.return_outputs:
|
||||
self.output["det"] = det.cpu().numpy()
|
||||
|
||||
# write
|
||||
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
|
||||
for *xyxy, conf, cls in reversed(det):
|
||||
@ -89,7 +92,7 @@ def predict(cfg):
|
||||
cfg.imgsz = check_imgsz(cfg.imgsz, min_dim=2) # check image size
|
||||
cfg.source = cfg.source if cfg.source is not None else ROOT / "assets"
|
||||
predictor = DetectionPredictor(cfg)
|
||||
predictor()
|
||||
predictor.predict_cli()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
@ -199,6 +199,7 @@ class Loss:
|
||||
def train(cfg):
|
||||
cfg.model = cfg.model or "yolov8n.yaml"
|
||||
cfg.data = cfg.data or "coco128.yaml" # or yolo.ClassificationDataset("mnist")
|
||||
cfg.device = cfg.device if cfg.device is not None else ''
|
||||
# trainer = DetectionTrainer(cfg)
|
||||
# trainer.train()
|
||||
from ultralytics import YOLO
|
||||
|
@ -58,10 +58,10 @@ class SegmentationPredictor(DetectionPredictor):
|
||||
return log_string
|
||||
# Segments
|
||||
mask = masks[idx]
|
||||
if self.args.save_txt:
|
||||
if self.args.save_txt or self.return_outputs:
|
||||
shape = im0.shape if self.args.retina_masks else im.shape[2:]
|
||||
segments = [
|
||||
ops.scale_segments(im0.shape if self.args.retina_masks else im.shape[2:], x, im0.shape, normalize=True)
|
||||
for x in reversed(ops.masks2segments(mask))]
|
||||
ops.scale_segments(shape, x, im0.shape, normalize=False) for x in reversed(ops.masks2segments(mask))]
|
||||
|
||||
# Print results
|
||||
for c in det[:, 5].unique():
|
||||
@ -76,12 +76,17 @@ class SegmentationPredictor(DetectionPredictor):
|
||||
255 if self.args.retina_masks else im[idx])
|
||||
|
||||
det = reversed(det[:, :6])
|
||||
self.all_outputs.append([det, mask])
|
||||
if self.return_outputs:
|
||||
self.output["det"] = det.cpu().numpy()
|
||||
self.output["segment"] = segments
|
||||
|
||||
# Write results
|
||||
for j, (*xyxy, conf, cls) in enumerate(reversed(det[:, :6])):
|
||||
for j, (*xyxy, conf, cls) in enumerate(det):
|
||||
if self.args.save_txt: # Write to file
|
||||
seg = segments[j].reshape(-1) # (n,2) to (n*2)
|
||||
seg = segments[j].copy()
|
||||
seg[:, 0] /= shape[1] # width
|
||||
seg[:, 1] /= shape[0] # height
|
||||
seg = seg.reshape(-1) # (n,2) to (n*2)
|
||||
line = (cls, *seg, conf) if self.args.save_conf else (cls, *seg) # label format
|
||||
with open(f'{self.txt_path}.txt', 'a') as f:
|
||||
f.write(('%g ' * len(line)).rstrip() % line + '\n')
|
||||
@ -106,7 +111,7 @@ def predict(cfg):
|
||||
cfg.source = cfg.source if cfg.source is not None else ROOT / "assets"
|
||||
|
||||
predictor = SegmentationPredictor(cfg)
|
||||
predictor()
|
||||
predictor.predict_cli()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
@ -144,6 +144,7 @@ class SegLoss(Loss):
|
||||
def train(cfg):
|
||||
cfg.model = cfg.model or "yolov8n-seg.yaml"
|
||||
cfg.data = cfg.data or "coco128-seg.yaml" # or yolo.ClassificationDataset("mnist")
|
||||
cfg.device = cfg.device if cfg.device is not None else ''
|
||||
# trainer = SegmentationTrainer(cfg)
|
||||
# trainer.train()
|
||||
from ultralytics import YOLO
|
||||
|
Reference in New Issue
Block a user