new check_dataset functions (#43)

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
Ayush Chaurasia
2022-11-12 19:32:41 +05:30
committed by GitHub
parent d143ac666f
commit 1f3aad86c1
13 changed files with 336 additions and 62 deletions

View File

@ -17,26 +17,6 @@ from ultralytics.yolo.utils.torch_utils import LOCAL_RANK, torch_distributed_zer
# BaseTrainer python usage
class ClassificationTrainer(BaseTrainer):
def get_dataset(self, dataset):
# temporary solution. Replace with new ultralytics.yolo.ClassificationDataset module
data = Path("datasets") / dataset
with torch_distributed_zero_first(LOCAL_RANK), WorkingDirectory(Path.cwd()):
data_dir = data if data.is_dir() else (Path.cwd() / data)
if not data_dir.is_dir():
self.console.info(f'\nDataset not found ⚠️, missing path {data_dir}, attempting download...')
t = time.time()
if str(data) == 'imagenet':
subprocess.run(f"bash {v8.ROOT / 'data/scripts/get_imagenet.sh'}", shell=True, check=True)
else:
url = f'https://github.com/ultralytics/yolov5/releases/download/v1.0/{dataset}.zip'
download(url, dir=data_dir.parent)
s = f"Dataset download success ✅ ({time.time() - t:.1f}s), saved to {colorstr('bold', data_dir)}\n"
self.console.info(s)
train_set = data_dir / "train"
test_set = data_dir / 'test' if (data_dir / 'test').exists() else data_dir / 'val' # data/test or data/val
return train_set, test_set
def get_dataloader(self, dataset_path, batch_size=None, rank=0):
return build_classification_dataloader(path=dataset_path,
imgsz=self.args.img_size,

View File

@ -21,26 +21,6 @@ from ultralytics.yolo.utils.torch_utils import LOCAL_RANK, de_parallel, torch_di
# BaseTrainer python usage
class SegmentationTrainer(BaseTrainer):
def get_dataset(self, dataset):
# temporary solution. Replace with new ultralytics.yolo.ClassificationDataset module
data = Path("datasets") / dataset
with torch_distributed_zero_first(LOCAL_RANK), WorkingDirectory(Path.cwd()):
data_dir = data if data.is_dir() else (Path.cwd() / data)
if not data_dir.is_dir():
self.console.info(f'\nDataset not found ⚠️, missing path {data_dir}, attempting download...')
t = time.time()
if str(data) == 'imagenet':
subprocess.run(f"bash {v8.ROOT / 'data/scripts/get_imagenet.sh'}", shell=True, check=True)
else:
url = f'https://github.com/ultralytics/yolov5/releases/download/v1.0/{dataset}.zip'
download(url, dir=data_dir.parent)
# TODO: add colorstr
s = f"Dataset download success ✅ ({time.time() - t:.1f}s), saved to {'bold', data_dir}\n"
self.console.info(s)
train_set = data_dir.parent / "coco128-seg"
test_set = train_set
return train_set, test_set
def get_dataloader(self, dataset_path, batch_size, rank=0):
# TODO: manage splits differently
# calculate stride - check if model is initialized
@ -253,7 +233,7 @@ class SegmentationTrainer(BaseTrainer):
@hydra.main(version_base=None, config_path=DEFAULT_CONFIG.parent, config_name=DEFAULT_CONFIG.name)
def train(cfg):
cfg.cfg = v8.ROOT / "models/yolov5n-seg.yaml"
cfg.data = cfg.data or "coco128-segments" # or yolo.ClassificationDataset("mnist")
cfg.data = cfg.data or "coco128-seg.yaml" # or yolo.ClassificationDataset("mnist")
trainer = SegmentationTrainer(cfg)
trainer.train()

View File

@ -8,9 +8,9 @@ import torch.nn.functional as F
from ultralytics.yolo.engine.validator import BaseValidator
from ultralytics.yolo.utils import ops
from ultralytics.yolo.utils.checks import check_requirements
from ultralytics.yolo.utils.files import yaml_load
from ultralytics.yolo.utils.metrics import (ConfusionMatrix, Metrics, ap_per_class_box_and_mask, box_iou,
fitness_segmentation, mask_iou)
from ultralytics.yolo.utils.modeling import yaml_load
from ultralytics.yolo.utils.torch_utils import de_parallel