ORT_CPP add CUDA FP16 inference (#4320)

Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
single_channel
DennisJ 1 year ago committed by GitHub
parent 02d4f5200d
commit 1c753cbce6
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -16,6 +16,10 @@ find_package(OpenCV REQUIRED)
include_directories(${OpenCV_INCLUDE_DIRS})
# -------------- Compile CUDA for FP16 inference if needed ------------------#
find_package(CUDA REQUIRED)
include_directories(${CUDA_INCLUDE_DIRS})
# ONNXRUNTIME
@ -51,9 +55,9 @@ set(PROJECT_SOURCES
add_executable(${PROJECT_NAME} ${PROJECT_SOURCES})
if(WIN32)
target_link_libraries(${PROJECT_NAME} ${OpenCV_LIBS} ${ONNXRUNTIME_ROOT}/lib/onnxruntime.lib)
target_link_libraries(${PROJECT_NAME} ${OpenCV_LIBS} ${ONNXRUNTIME_ROOT}/lib/onnxruntime.lib ${CUDA_LIBRARIES})
elseif(LINUX)
target_link_libraries(${PROJECT_NAME} ${OpenCV_LIBS} ${ONNXRUNTIME_ROOT}/lib/libonnxruntime.so)
target_link_libraries(${PROJECT_NAME} ${OpenCV_LIBS} ${ONNXRUNTIME_ROOT}/lib/libonnxruntime.so ${CUDA_LIBRARIES})
elseif(APPLE)
target_link_libraries(${PROJECT_NAME} ${OpenCV_LIBS} ${ONNXRUNTIME_ROOT}/lib/libonnxruntime.dylib)
endif()

@ -6,8 +6,7 @@ This example demonstrates how to perform inference using YOLOv8 in C++ with ONNX
- Friendly for deployment in the industrial sector.
- Faster than OpenCV's DNN inference on both CPU and GPU.
- Supports CUDA acceleration.
- Easy to add FP16 inference (using template functions).
- Supports FP32 and FP16 CUDA acceleration.
## Exporting YOLOv8 Models
@ -47,13 +46,12 @@ Note: The dependency on C++17 is due to the usage of the C++17 filesystem featur
DCSP_INIT_PARAM params{ model_path, YOLO_ORIGIN_V8, {imgsz_w, imgsz_h}, 0.1, 0.5, false};
// GPU inference
DCSP_INIT_PARAM params{ model_path, YOLO_ORIGIN_V8, {imgsz_w, imgsz_h}, 0.1, 0.5, true};
// Load your image
cv::Mat img = cv::imread(img_path);
// Init Inference Session
char* ret = yoloDetector->CreateSession(params);
char* ret = p1->CreateSession(params);
ret = p->RunSession(img, res);
ret = yoloDetector->RunSession(img, res);
```
This repository should also work for YOLOv5, which needs a permute operator for the output of the YOLOv5 model, but this has not been implemented yet.

@ -15,6 +15,13 @@ DCSP_CORE::~DCSP_CORE()
}
namespace Ort
{
template<>
struct TypeToTensorType<half> { static constexpr ONNXTensorElementDataType type = ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT16; };
}
template<typename T>
char* BlobFromImage(cv::Mat& iImg, T& iBlob)
{
@ -56,7 +63,7 @@ char* DCSP_CORE::CreateSession(DCSP_INIT_PARAM &iParams)
bool result = std::regex_search(iParams.ModelPath, pattern);
if (result)
{
Ret = "[DCSP_ONNX]:model path error.change your model path without chinese characters.";
Ret = "[DCSP_ONNX]:Model path error.Change your model path without chinese characters.";
std::cout << Ret << std::endl;
return Ret;
}
@ -109,9 +116,7 @@ char* DCSP_CORE::CreateSession(DCSP_INIT_PARAM &iParams)
}
options = Ort::RunOptions{ nullptr };
WarmUpSession();
//std::cout << OrtGetApiBase()->GetVersionString() << std::endl;;
Ret = RET_OK;
return Ret;
return RET_OK;
}
catch (const std::exception& e)
{
@ -122,7 +127,6 @@ char* DCSP_CORE::CreateSession(DCSP_INIT_PARAM &iParams)
std::strcpy(merged, result.c_str());
std::cout << merged << std::endl;
delete[] merged;
//return merged;
return "[DCSP_ONNX]:Create session failed.";
}
@ -145,6 +149,13 @@ char* DCSP_CORE::RunSession(cv::Mat &iImg, std::vector<DCSP_RESULT>& oResult)
std::vector<int64_t> inputNodeDims = { 1,3,imgSize.at(0),imgSize.at(1) };
TensorProcess(starttime_1, iImg, blob, inputNodeDims, oResult);
}
else
{
half* blob = new half[processedImg.total() * 3];
BlobFromImage(processedImg, blob);
std::vector<int64_t> inputNodeDims = { 1,3,imgSize.at(0),imgSize.at(1) };
TensorProcess(starttime_1, iImg, blob, inputNodeDims, oResult);
}
return Ret;
}
@ -169,7 +180,8 @@ char* DCSP_CORE::TensorProcess(clock_t& starttime_1, cv::Mat& iImg, N& blob, std
delete blob;
switch (modelType)
{
case 1:
case 1://V8_ORIGIN_FP32
case 4://V8_ORIGIN_FP16
{
int strideNum = outputNodeDims[2];
int signalResultNum = outputNodeDims[1];
@ -243,15 +255,13 @@ char* DCSP_CORE::TensorProcess(clock_t& starttime_1, cv::Mat& iImg, N& blob, std
break;
}
}
char* Ret = RET_OK;
return Ret;
return RET_OK;
}
char* DCSP_CORE::WarmUpSession()
{
clock_t starttime_1 = clock();
char* Ret = RET_OK;
cv::Mat iImg = cv::Mat(cv::Size(imgSize.at(0), imgSize.at(1)), CV_8UC3);
cv::Mat processedImg;
PostProcess(iImg, imgSize, processedImg);
@ -270,5 +280,20 @@ char* DCSP_CORE::WarmUpSession()
std::cout << "[DCSP_ONNX(CUDA)]: " << "Cuda warm-up cost " << post_process_time << " ms. " << std::endl;
}
}
return Ret;
else
{
half* blob = new half[iImg.total() * 3];
BlobFromImage(processedImg, blob);
std::vector<int64_t> YOLO_input_node_dims = { 1,3,imgSize.at(0),imgSize.at(1) };
Ort::Value input_tensor = Ort::Value::CreateTensor<half>(Ort::MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeCPU), blob, 3 * imgSize.at(0) * imgSize.at(1), YOLO_input_node_dims.data(), YOLO_input_node_dims.size());
auto output_tensors = session->Run(options, inputNodeNames.data(), &input_tensor, 1, outputNodeNames.data(), outputNodeNames.size());
delete[] blob;
clock_t starttime_4 = clock();
double post_process_time = (double)(starttime_4 - starttime_1) / CLOCKS_PER_SEC * 1000;
if (cudaEnable)
{
std::cout << "[DCSP_ONNX(CUDA)]: " << "Cuda warm-up cost " << post_process_time << " ms. " << std::endl;
}
}
return RET_OK;
}

@ -13,6 +13,7 @@
#include <cstdio>
#include <opencv2/opencv.hpp>
#include "onnxruntime_cxx_api.h"
#include <cuda_fp16.h>
enum MODEL_TYPE
@ -21,7 +22,10 @@ enum MODEL_TYPE
YOLO_ORIGIN_V5 = 0,
YOLO_ORIGIN_V8 = 1,//only support v8 detector currently
YOLO_POSE_V8 = 2,
YOLO_CLS_V8 = 3
YOLO_CLS_V8 = 3,
YOLO_ORIGIN_V8_HALF = 4,
YOLO_POSE_V8_HALF = 5,
YOLO_CLS_V8_HALF = 6
};

@ -82,13 +82,15 @@ int read_coco_yaml(DCSP_CORE*& p)
int main()
{
DCSP_CORE* p1 = new DCSP_CORE;
DCSP_CORE* yoloDetector = new DCSP_CORE;
std::string model_path = "yolov8n.onnx";
read_coco_yaml(p1);
// GPU inference
read_coco_yaml(yoloDetector);
// GPU FP32 inference
DCSP_INIT_PARAM params{ model_path, YOLO_ORIGIN_V8, {640, 640}, 0.1, 0.5, true };
// GPU FP16 inference
// DCSP_INIT_PARAM params{ model_path, YOLO_ORIGIN_V8_HALF, {640, 640}, 0.1, 0.5, true };
// CPU inference
// DCSP_INIT_PARAM params{ model_path, YOLO_ORIGIN_V8, {640, 640}, 0.1, 0.5, false };
p1->CreateSession(params);
file_iterator(p1);
yoloDetector->CreateSession(params);
file_iterator(yoloDetector);
}

Loading…
Cancel
Save