|
|
|
@ -206,7 +206,7 @@ class Exporter:
|
|
|
|
|
self.output_shape = tuple(y.shape) if isinstance(y, torch.Tensor) else tuple(tuple(x.shape) for x in y)
|
|
|
|
|
self.pretty_name = self.file.stem.replace('yolo', 'YOLO')
|
|
|
|
|
self.metadata = {
|
|
|
|
|
'description': f"Ultralytics {self.pretty_name} model trained on {self.model.args['data']}",
|
|
|
|
|
'description': f"Ultralytics {self.pretty_name} model trained on {self.args.data}",
|
|
|
|
|
'author': 'Ultralytics',
|
|
|
|
|
'license': 'GPL-3.0 https://ultralytics.com/license',
|
|
|
|
|
'version': __version__,
|
|
|
|
@ -257,10 +257,15 @@ class Exporter:
|
|
|
|
|
f = [str(x) for x in f if x] # filter out '' and None
|
|
|
|
|
if any(f):
|
|
|
|
|
f = str(Path(f[-1]))
|
|
|
|
|
LOGGER.info(f'\nExport complete ({time.time() - t:.1f}s)'
|
|
|
|
|
square = self.imgsz[0] == self.imgsz[1]
|
|
|
|
|
s = f"WARNING ⚠️ non-PyTorch val requires square images, 'imgsz={self.imgsz}' will not work. Use " \
|
|
|
|
|
f"export 'imgsz={max(self.imgsz)}' if val is required." if not square else ''
|
|
|
|
|
imgsz = self.imgsz[0] if square else str(self.imgsz)[1:-1].replace(' ', '')
|
|
|
|
|
LOGGER.info(
|
|
|
|
|
f'\nExport complete ({time.time() - t:.1f}s)'
|
|
|
|
|
f"\nResults saved to {colorstr('bold', file.parent.resolve())}"
|
|
|
|
|
f"\nPredict: yolo task={model.task} mode=predict model={f}"
|
|
|
|
|
f"\nValidate: yolo task={model.task} mode=val model={f}"
|
|
|
|
|
f"\nPredict: yolo task={model.task} mode=predict model={f} imgsz={imgsz}"
|
|
|
|
|
f"\nValidate: yolo task={model.task} mode=val model={f} imgsz={imgsz} data={self.args.data} {s}"
|
|
|
|
|
f"\nVisualize: https://netron.app")
|
|
|
|
|
|
|
|
|
|
self.run_callbacks("on_export_end")
|
|
|
|
@ -497,7 +502,7 @@ class Exporter:
|
|
|
|
|
except ImportError:
|
|
|
|
|
check_requirements(f"tensorflow{'' if torch.cuda.is_available() else '-macos' if MACOS else '-cpu'}")
|
|
|
|
|
import tensorflow as tf # noqa
|
|
|
|
|
check_requirements(("onnx", "onnx2tf", "sng4onnx", "onnxsim", "onnx_graphsurgeon"),
|
|
|
|
|
check_requirements(("onnx", "onnx2tf", "sng4onnx", "onnxsim", "onnx_graphsurgeon", "tflite_support"),
|
|
|
|
|
cmds="--extra-index-url https://pypi.ngc.nvidia.com ")
|
|
|
|
|
|
|
|
|
|
LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...')
|
|
|
|
@ -680,24 +685,45 @@ class Exporter:
|
|
|
|
|
|
|
|
|
|
def _add_tflite_metadata(self, file):
|
|
|
|
|
# Add metadata to *.tflite models per https://www.tensorflow.org/lite/models/convert/metadata
|
|
|
|
|
check_requirements('tflite_support')
|
|
|
|
|
|
|
|
|
|
from tflite_support import flatbuffers # noqa
|
|
|
|
|
from tflite_support import metadata as _metadata # noqa
|
|
|
|
|
from tflite_support import metadata_schema_py_generated as _metadata_fb # noqa
|
|
|
|
|
|
|
|
|
|
# Creates model info.
|
|
|
|
|
model_meta = _metadata_fb.ModelMetadataT()
|
|
|
|
|
model_meta.name = self.metadata['description']
|
|
|
|
|
model_meta.version = self.metadata['version']
|
|
|
|
|
model_meta.author = self.metadata['author']
|
|
|
|
|
model_meta.license = self.metadata['license']
|
|
|
|
|
|
|
|
|
|
# Creates input info.
|
|
|
|
|
input_meta = _metadata_fb.TensorMetadataT()
|
|
|
|
|
input_meta.name = "image"
|
|
|
|
|
input_meta.description = "Input image to be detected."
|
|
|
|
|
input_meta.content = _metadata_fb.ContentT()
|
|
|
|
|
input_meta.content.contentProperties = _metadata_fb.ImagePropertiesT()
|
|
|
|
|
input_meta.content.contentProperties.colorSpace = _metadata_fb.ColorSpaceType.RGB
|
|
|
|
|
input_meta.content.contentPropertiesType = _metadata_fb.ContentProperties.ImageProperties
|
|
|
|
|
|
|
|
|
|
# Creates output info.
|
|
|
|
|
output_meta = _metadata_fb.TensorMetadataT()
|
|
|
|
|
output_meta.name = "output"
|
|
|
|
|
output_meta.description = "Coordinates of detected objects, class labels, and confidence score."
|
|
|
|
|
|
|
|
|
|
# Label file
|
|
|
|
|
tmp_file = Path('/tmp/meta.txt')
|
|
|
|
|
with open(tmp_file, 'w') as meta_f:
|
|
|
|
|
meta_f.write(str(self.metadata))
|
|
|
|
|
|
|
|
|
|
model_meta = _metadata_fb.ModelMetadataT()
|
|
|
|
|
label_file = _metadata_fb.AssociatedFileT()
|
|
|
|
|
label_file.name = tmp_file.name
|
|
|
|
|
model_meta.associatedFiles = [label_file]
|
|
|
|
|
label_file.type = _metadata_fb.AssociatedFileType.TENSOR_AXIS_LABELS
|
|
|
|
|
output_meta.associatedFiles = [label_file]
|
|
|
|
|
|
|
|
|
|
# Creates subgraph info.
|
|
|
|
|
subgraph = _metadata_fb.SubGraphMetadataT()
|
|
|
|
|
subgraph.inputTensorMetadata = [_metadata_fb.TensorMetadataT()]
|
|
|
|
|
subgraph.outputTensorMetadata = [_metadata_fb.TensorMetadataT()] * len(self.output_shape)
|
|
|
|
|
subgraph.inputTensorMetadata = [input_meta]
|
|
|
|
|
subgraph.outputTensorMetadata = [output_meta]
|
|
|
|
|
model_meta.subgraphMetadata = [subgraph]
|
|
|
|
|
|
|
|
|
|
b = flatbuffers.Builder(0)
|
|
|
|
@ -710,6 +736,14 @@ class Exporter:
|
|
|
|
|
populator.populate()
|
|
|
|
|
tmp_file.unlink()
|
|
|
|
|
|
|
|
|
|
# TODO Rename this here and in `_add_tflite_metadata`
|
|
|
|
|
def _extracted_from__add_tflite_metadata_15(self, _metadata_fb, arg1, arg2):
|
|
|
|
|
# Creates input info.
|
|
|
|
|
result = _metadata_fb.TensorMetadataT()
|
|
|
|
|
result.name = arg1
|
|
|
|
|
result.description = arg2
|
|
|
|
|
return result
|
|
|
|
|
|
|
|
|
|
def _pipeline_coreml(self, model, prefix=colorstr('CoreML Pipeline:')):
|
|
|
|
|
# YOLOv8 CoreML pipeline
|
|
|
|
|
import coremltools as ct # noqa
|
|
|
|
|