Fix yolo checks
as a package bug in Colab (#972)
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Sergio Sanchez <sergio.ssm.97@gmail.com>
This commit is contained in:
@ -7,7 +7,7 @@ from ultralytics.nn.tasks import ClassificationModel, attempt_load_one_weight
|
||||
from ultralytics.yolo import v8
|
||||
from ultralytics.yolo.data import build_classification_dataloader
|
||||
from ultralytics.yolo.engine.trainer import BaseTrainer
|
||||
from ultralytics.yolo.utils import DEFAULT_CFG
|
||||
from ultralytics.yolo.utils import DEFAULT_CFG, RANK
|
||||
from ultralytics.yolo.utils.torch_utils import is_parallel, strip_optimizer
|
||||
|
||||
|
||||
@ -23,7 +23,7 @@ class ClassificationTrainer(BaseTrainer):
|
||||
self.model.names = self.data["names"]
|
||||
|
||||
def get_model(self, cfg=None, weights=None, verbose=True):
|
||||
model = ClassificationModel(cfg, nc=self.data["nc"])
|
||||
model = ClassificationModel(cfg, nc=self.data["nc"], verbose=verbose and RANK == -1)
|
||||
if weights:
|
||||
model.load(weights)
|
||||
|
||||
|
@ -9,7 +9,7 @@ from ultralytics.yolo import v8
|
||||
from ultralytics.yolo.data import build_dataloader
|
||||
from ultralytics.yolo.data.dataloaders.v5loader import create_dataloader
|
||||
from ultralytics.yolo.engine.trainer import BaseTrainer
|
||||
from ultralytics.yolo.utils import DEFAULT_CFG, colorstr
|
||||
from ultralytics.yolo.utils import DEFAULT_CFG, RANK, colorstr
|
||||
from ultralytics.yolo.utils.loss import BboxLoss
|
||||
from ultralytics.yolo.utils.ops import xywh2xyxy
|
||||
from ultralytics.yolo.utils.plotting import plot_images, plot_results
|
||||
@ -57,7 +57,7 @@ class DetectionTrainer(BaseTrainer):
|
||||
# TODO: self.model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc
|
||||
|
||||
def get_model(self, cfg=None, weights=None, verbose=True):
|
||||
model = DetectionModel(cfg, ch=3, nc=self.data["nc"], verbose=verbose)
|
||||
model = DetectionModel(cfg, ch=3, nc=self.data["nc"], verbose=verbose and RANK == -1)
|
||||
if weights:
|
||||
model.load(weights)
|
||||
|
||||
|
@ -6,7 +6,7 @@ import torch.nn.functional as F
|
||||
|
||||
from ultralytics.nn.tasks import SegmentationModel
|
||||
from ultralytics.yolo import v8
|
||||
from ultralytics.yolo.utils import DEFAULT_CFG
|
||||
from ultralytics.yolo.utils import DEFAULT_CFG, RANK
|
||||
from ultralytics.yolo.utils.ops import crop_mask, xyxy2xywh
|
||||
from ultralytics.yolo.utils.plotting import plot_images, plot_results
|
||||
from ultralytics.yolo.utils.tal import make_anchors
|
||||
@ -24,7 +24,7 @@ class SegmentationTrainer(v8.detect.DetectionTrainer):
|
||||
super().__init__(cfg, overrides)
|
||||
|
||||
def get_model(self, cfg=None, weights=None, verbose=True):
|
||||
model = SegmentationModel(cfg, ch=3, nc=self.data["nc"], verbose=verbose)
|
||||
model = SegmentationModel(cfg, ch=3, nc=self.data["nc"], verbose=verbose and RANK == -1)
|
||||
if weights:
|
||||
model.load(weights)
|
||||
|
||||
|
Reference in New Issue
Block a user