Clean validator (#144)

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
single_channel
Laughing 2 years ago committed by GitHub
parent 46cb657b64
commit 19334ebb16
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -463,6 +463,8 @@ class LetterBox:
dw /= 2 # divide padding into 2 sides dw /= 2 # divide padding into 2 sides
dh /= 2 dh /= 2
if labels.get("ratio_pad"):
labels["ratio_pad"] = (labels["ratio_pad"], (dw, dh)) # for evaluation
if shape[::-1] != new_unpad: # resize if shape[::-1] != new_unpad: # resize
img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR) img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR)

@ -179,6 +179,10 @@ class BaseDataset(Dataset):
def get_label_info(self, index): def get_label_info(self, index):
label = self.labels[index].copy() label = self.labels[index].copy()
label["img"], label["ori_shape"], label["resized_shape"] = self.load_image(index) label["img"], label["ori_shape"], label["resized_shape"] = self.load_image(index)
label["ratio_pad"] = (
label["resized_shape"][0] / label["ori_shape"][0],
label["resized_shape"][1] / label["ori_shape"][1],
) # for evaluation
if self.rect: if self.rect:
label["rect_shape"] = self.batch_shapes[self.batch[index]] label["rect_shape"] = self.batch_shapes[self.batch[index]]
label = self.update_labels_info(label) label = self.update_labels_info(label)

@ -895,7 +895,7 @@ class LoadImagesAndLabels(Dataset):
batch_idx, cls, bboxes = torch.cat(label, 0).split((1, 1, 4), dim=1) batch_idx, cls, bboxes = torch.cat(label, 0).split((1, 1, 4), dim=1)
return { return {
'ori_shape': tuple((x[0] if x else None) for x in shapes), 'ori_shape': tuple((x[0] if x else None) for x in shapes),
'resized_shape': tuple(tuple(x.shape[1:]) for x in im), 'ratio_pad': tuple((x[1] if x else None) for x in shapes),
'im_file': path, 'im_file': path,
'img': torch.stack(im, 0), 'img': torch.stack(im, 0),
'cls': cls, 'cls': cls,

@ -127,7 +127,7 @@ class YOLODataset(BaseDataset):
mosaic = self.augment and not self.rect mosaic = self.augment and not self.rect
transforms = mosaic_transforms(self, self.imgsz, hyp) if mosaic else affine_transforms(self.imgsz, hyp) transforms = mosaic_transforms(self, self.imgsz, hyp) if mosaic else affine_transforms(self.imgsz, hyp)
else: else:
transforms = Compose([LetterBox(new_shape=(self.imgsz, self.imgsz))]) transforms = Compose([LetterBox(new_shape=(self.imgsz, self.imgsz), scaleup=False)])
transforms.append( transforms.append(
Format(bbox_format="xywh", Format(bbox_format="xywh",
normalize=True, normalize=True,

@ -224,7 +224,7 @@ class BaseTrainer:
if rank in {0, -1}: if rank in {0, -1}:
self.test_loader = self.get_dataloader(self.testset, batch_size=batch_size * 2, rank=-1, mode="val") self.test_loader = self.get_dataloader(self.testset, batch_size=batch_size * 2, rank=-1, mode="val")
self.validator = self.get_validator() self.validator = self.get_validator()
metric_keys = self.validator.metric_keys + self.label_loss_items(prefix="val") metric_keys = self.validator.metrics.keys + self.label_loss_items(prefix="val")
self.metrics = dict(zip(metric_keys, [0] * len(metric_keys))) # TODO: init metrics for plot_results()? self.metrics = dict(zip(metric_keys, [0] * len(metric_keys))) # TODO: init metrics for plot_results()?
self.ema = ModelEMA(self.model) self.ema = ModelEMA(self.model)
self.resume_training(ckpt) self.resume_training(ckpt)

@ -469,7 +469,7 @@ class Metric:
def mean_results(self): def mean_results(self):
"""Mean of results, return mp, mr, map50, map""" """Mean of results, return mp, mr, map50, map"""
return self.mp, self.mr, self.map50, self.map return [self.mp, self.mr, self.map50, self.map]
def class_result(self, i): def class_result(self, i):
"""class-aware result, return p[i], r[i], ap50[i], ap[i]""" """class-aware result, return p[i], r[i], ap50[i], ap[i]"""
@ -520,6 +520,7 @@ class DetMetrics:
def get_maps(self, nc): def get_maps(self, nc):
return self.metric.get_maps(nc) return self.metric.get_maps(nc)
@property
def fitness(self): def fitness(self):
return self.metric.fitness() return self.metric.fitness()
@ -527,6 +528,10 @@ class DetMetrics:
def ap_class_index(self): def ap_class_index(self):
return self.metric.ap_class_index return self.metric.ap_class_index
@property
def results_dict(self):
return dict(zip(self.keys + ["fitness"], self.mean_results() + [self.fitness]))
class SegmentMetrics: class SegmentMetrics:
@ -578,6 +583,7 @@ class SegmentMetrics:
def get_maps(self, nc): def get_maps(self, nc):
return self.metric_box.get_maps(nc) + self.metric_mask.get_maps(nc) return self.metric_box.get_maps(nc) + self.metric_mask.get_maps(nc)
@property
def fitness(self): def fitness(self):
return self.metric_mask.fitness() + self.metric_box.fitness() return self.metric_mask.fitness() + self.metric_box.fitness()
@ -585,3 +591,30 @@ class SegmentMetrics:
def ap_class_index(self): def ap_class_index(self):
# boxes and masks have the same ap_class_index # boxes and masks have the same ap_class_index
return self.metric_box.ap_class_index return self.metric_box.ap_class_index
@property
def results_dict(self):
return dict(zip(self.keys + ["fitness"], self.mean_results() + [self.fitness]))
class ClassifyMetrics:
def __init__(self) -> None:
self.top1 = 0
self.top5 = 0
def process(self, correct):
acc = torch.stack((correct[:, 0], correct.max(1).values), dim=1) # (top1, top5) accuracy
self.top1, self.top5 = acc.mean(0).tolist()
@property
def fitness(self):
return self.top5
@property
def results_dict(self):
return dict(zip(self.keys + ["fitness"], [self.top1, self.top5, self.fitness]))
@property
def keys(self):
return ["top1", "top5"]

@ -4,10 +4,15 @@ import torch
from ultralytics.yolo.data import build_classification_dataloader from ultralytics.yolo.data import build_classification_dataloader
from ultralytics.yolo.engine.validator import BaseValidator from ultralytics.yolo.engine.validator import BaseValidator
from ultralytics.yolo.utils import DEFAULT_CONFIG from ultralytics.yolo.utils import DEFAULT_CONFIG
from ultralytics.yolo.utils.metrics import ClassifyMetrics
class ClassificationValidator(BaseValidator): class ClassificationValidator(BaseValidator):
def __init__(self, dataloader=None, save_dir=None, pbar=None, logger=None, args=None):
super().__init__(dataloader, save_dir, pbar, logger, args)
self.metrics = ClassifyMetrics()
def init_metrics(self, model): def init_metrics(self, model):
self.correct = torch.tensor([], device=next(model.parameters()).device) self.correct = torch.tensor([], device=next(model.parameters()).device)
@ -23,17 +28,12 @@ class ClassificationValidator(BaseValidator):
self.correct = torch.cat((self.correct, correct_in_batch)) self.correct = torch.cat((self.correct, correct_in_batch))
def get_stats(self): def get_stats(self):
acc = torch.stack((self.correct[:, 0], self.correct.max(1).values), dim=1) # (top1, top5) accuracy self.metrics.process(self.correct)
top1, top5 = acc.mean(0).tolist() return self.metrics.results_dict
return {"top1": top1, "top5": top5, "fitness": top5}
def get_dataloader(self, dataset_path, batch_size): def get_dataloader(self, dataset_path, batch_size):
return build_classification_dataloader(path=dataset_path, imgsz=self.args.imgsz, batch_size=batch_size) return build_classification_dataloader(path=dataset_path, imgsz=self.args.imgsz, batch_size=batch_size)
@property
def metric_keys(self):
return ["top1", "top5"]
@hydra.main(version_base=None, config_path=str(DEFAULT_CONFIG.parent), config_name=DEFAULT_CONFIG.name) @hydra.main(version_base=None, config_path=str(DEFAULT_CONFIG.parent), config_name=DEFAULT_CONFIG.name)
def val(cfg): def val(cfg):

@ -22,7 +22,6 @@ class DetectionValidator(BaseValidator):
self.data_dict = yaml_load(check_file(self.args.data), append_filename=True) if self.args.data else None self.data_dict = yaml_load(check_file(self.args.data), append_filename=True) if self.args.data else None
self.is_coco = False self.is_coco = False
self.class_map = None self.class_map = None
self.targets = None
self.metrics = DetMetrics(save_dir=self.save_dir, plot=self.args.plots) self.metrics = DetMetrics(save_dir=self.save_dir, plot=self.args.plots)
self.iouv = torch.linspace(0.5, 0.95, 10) # iou vector for mAP@0.5:0.95 self.iouv = torch.linspace(0.5, 0.95, 10) # iou vector for mAP@0.5:0.95
self.niou = self.iouv.numel() self.niou = self.iouv.numel()
@ -30,13 +29,13 @@ class DetectionValidator(BaseValidator):
def preprocess(self, batch): def preprocess(self, batch):
batch["img"] = batch["img"].to(self.device, non_blocking=True) batch["img"] = batch["img"].to(self.device, non_blocking=True)
batch["img"] = (batch["img"].half() if self.args.half else batch["img"].float()) / 255 batch["img"] = (batch["img"].half() if self.args.half else batch["img"].float()) / 255
self.nb, _, self.height, self.width = batch["img"].shape # batch size, channels, height, width for k in ["batch_idx", "cls", "bboxes"]:
self.targets = torch.cat((batch["batch_idx"].view(-1, 1), batch["cls"].view(-1, 1), batch["bboxes"]), 1) batch[k] = batch[k].to(self.device)
self.targets = self.targets.to(self.device)
height, width = batch["img"].shape[2:] nb, _, height, width = batch["img"].shape
self.targets[:, 2:] *= torch.tensor((width, height, width, height), device=self.device) # to pixels batch["bboxes"] *= torch.tensor((width, height, width, height), device=self.device) # to pixels
self.lb = [self.targets[self.targets[:, 0] == i, 1:] self.lb = [torch.cat([batch["cls"], batch["bboxes"]], dim=-1)[batch["batch_idx"] == i]
for i in range(self.nb)] if self.args.save_hybrid else [] # for autolabelling for i in range(nb)] if self.args.save_hybrid else [] # for autolabelling
return batch return batch
@ -69,36 +68,39 @@ class DetectionValidator(BaseValidator):
def update_metrics(self, preds, batch): def update_metrics(self, preds, batch):
# Metrics # Metrics
for si, pred in enumerate(preds): for si, pred in enumerate(preds):
labels = self.targets[self.targets[:, 0] == si, 1:] idx = batch["batch_idx"] == si
nl, npr = labels.shape[0], pred.shape[0] # number of labels, predictions cls = batch["cls"][idx]
bbox = batch["bboxes"][idx]
nl, npr = cls.shape[0], pred.shape[0] # number of labels, predictions
shape = batch["ori_shape"][si] shape = batch["ori_shape"][si]
# path = batch["shape"][si][0]
correct_bboxes = torch.zeros(npr, self.niou, dtype=torch.bool, device=self.device) # init correct_bboxes = torch.zeros(npr, self.niou, dtype=torch.bool, device=self.device) # init
self.seen += 1 self.seen += 1
if npr == 0: if npr == 0:
if nl: if nl:
self.stats.append((correct_bboxes, *torch.zeros((2, 0), device=self.device), labels[:, 0])) self.stats.append((correct_bboxes, *torch.zeros((2, 0), device=self.device), cls.squeeze(-1)))
if self.args.plots: if self.args.plots:
self.confusion_matrix.process_batch(detections=None, labels=labels[:, 0]) self.confusion_matrix.process_batch(detections=None, labels=cls.squeeze(-1))
continue continue
# Predictions # Predictions
if self.args.single_cls: if self.args.single_cls:
pred[:, 5] = 0 pred[:, 5] = 0
predn = pred.clone() predn = pred.clone()
ops.scale_boxes(batch["img"][si].shape[1:], predn[:, :4], shape) # native-space pred ops.scale_boxes(batch["img"][si].shape[1:], predn[:, :4], shape,
ratio_pad=batch["ratio_pad"][si]) # native-space pred
# Evaluate # Evaluate
if nl: if nl:
tbox = ops.xywh2xyxy(labels[:, 1:5]) # target boxes tbox = ops.xywh2xyxy(bbox) # target boxes
ops.scale_boxes(batch["img"][si].shape[1:], tbox, shape) # native-space labels ops.scale_boxes(batch["img"][si].shape[1:], tbox, shape,
labelsn = torch.cat((labels[:, 0:1], tbox), 1) # native-space labels ratio_pad=batch["ratio_pad"][si]) # native-space labels
labelsn = torch.cat((cls, tbox), 1) # native-space labels
correct_bboxes = self._process_batch(predn, labelsn) correct_bboxes = self._process_batch(predn, labelsn)
# TODO: maybe remove these `self.` arguments as they already are member variable # TODO: maybe remove these `self.` arguments as they already are member variable
if self.args.plots: if self.args.plots:
self.confusion_matrix.process_batch(predn, labelsn) self.confusion_matrix.process_batch(predn, labelsn)
self.stats.append((correct_bboxes, pred[:, 4], pred[:, 5], labels[:, 0])) # (conf, pcls, tcls) self.stats.append((correct_bboxes, pred[:, 4], pred[:, 5], cls.squeeze(-1))) # (conf, pcls, tcls)
# Save # Save
if self.args.save_json: if self.args.save_json:
@ -111,12 +113,10 @@ class DetectionValidator(BaseValidator):
if len(stats) and stats[0].any(): if len(stats) and stats[0].any():
self.metrics.process(*stats) self.metrics.process(*stats)
self.nt_per_class = np.bincount(stats[-1].astype(int), minlength=self.nc) # number of targets per class self.nt_per_class = np.bincount(stats[-1].astype(int), minlength=self.nc) # number of targets per class
fitness = {"fitness": self.metrics.fitness()} return self.metrics.results_dict
metrics = dict(zip(self.metric_keys, self.metrics.mean_results()))
return {**metrics, **fitness}
def print_results(self): def print_results(self):
pf = '%22s' + '%11i' * 2 + '%11.3g' * len(self.metric_keys) # print format pf = '%22s' + '%11i' * 2 + '%11.3g' * len(self.metrics.keys) # print format
self.logger.info(pf % ("all", self.seen, self.nt_per_class.sum(), *self.metrics.mean_results())) self.logger.info(pf % ("all", self.seen, self.nt_per_class.sum(), *self.metrics.mean_results()))
if self.nt_per_class.sum() == 0: if self.nt_per_class.sum() == 0:
self.logger.warning( self.logger.warning(
@ -166,18 +166,13 @@ class DetectionValidator(BaseValidator):
hyp=dict(self.args), hyp=dict(self.args),
cache=False, cache=False,
pad=0.5, pad=0.5,
rect=self.args.rect, rect=True,
workers=self.args.workers, workers=self.args.workers,
prefix=colorstr(f'{self.args.mode}: '), prefix=colorstr(f'{self.args.mode}: '),
shuffle=False, shuffle=False,
seed=self.args.seed)[0] if self.args.v5loader else \ seed=self.args.seed)[0] if self.args.v5loader else \
build_dataloader(self.args, batch_size, img_path=dataset_path, stride=gs, mode="val")[0] build_dataloader(self.args, batch_size, img_path=dataset_path, stride=gs, mode="val")[0]
# TODO: align with train loss metrics
@property
def metric_keys(self):
return ["metrics/precision(B)", "metrics/recall(B)", "metrics/mAP50(B)", "metrics/mAP50-95(B)"]
def plot_val_samples(self, batch, ni): def plot_val_samples(self, batch, ni):
plot_images(batch["img"], plot_images(batch["img"],
batch["batch_idx"], batch["batch_idx"],
@ -226,7 +221,7 @@ class DetectionValidator(BaseValidator):
eval.evaluate() eval.evaluate()
eval.accumulate() eval.accumulate()
eval.summarize() eval.summarize()
stats[self.metric_keys[-1]], stats[self.metric_keys[-2]] = eval.stats[:2] # update mAP50-95 and mAP50 stats[self.metrics.keys[-1]], stats[self.metrics.keys[-2]] = eval.stats[:2] # update mAP50-95 and mAP50
except Exception as e: except Exception as e:
self.logger.warning(f'pycocotools unable to run: {e}') self.logger.warning(f'pycocotools unable to run: {e}')
return stats return stats

@ -22,17 +22,8 @@ class SegmentationValidator(DetectionValidator):
self.metrics = SegmentMetrics(save_dir=self.save_dir, plot=self.args.plots) self.metrics = SegmentMetrics(save_dir=self.save_dir, plot=self.args.plots)
def preprocess(self, batch): def preprocess(self, batch):
batch["img"] = batch["img"].to(self.device, non_blocking=True) batch = super().preprocess(batch)
batch["img"] = (batch["img"].half() if self.args.half else batch["img"].float()) / 255
batch["masks"] = batch["masks"].to(self.device).float() batch["masks"] = batch["masks"].to(self.device).float()
self.nb, _, self.height, self.width = batch["img"].shape # batch size, channels, height, width
self.targets = torch.cat((batch["batch_idx"].view(-1, 1), batch["cls"].view(-1, 1), batch["bboxes"]), 1)
self.targets = self.targets.to(self.device)
height, width = batch["img"].shape[2:]
self.targets[:, 2:] *= torch.tensor((width, height, width, height), device=self.device) # to pixels
self.lb = [self.targets[self.targets[:, 0] == i, 1:]
for i in range(self.nb)] if self.args.save_hybrid else [] # for autolabelling
return batch return batch
def init_metrics(self, model): def init_metrics(self, model):
@ -72,10 +63,11 @@ class SegmentationValidator(DetectionValidator):
def update_metrics(self, preds, batch): def update_metrics(self, preds, batch):
# Metrics # Metrics
for si, (pred, proto) in enumerate(zip(preds[0], preds[1])): for si, (pred, proto) in enumerate(zip(preds[0], preds[1])):
labels = self.targets[self.targets[:, 0] == si, 1:] idx = batch["batch_idx"] == si
nl, npr = labels.shape[0], pred.shape[0] # number of labels, predictions cls = batch["cls"][idx]
bbox = batch["bboxes"][idx]
nl, npr = cls.shape[0], pred.shape[0] # number of labels, predictions
shape = batch["ori_shape"][si] shape = batch["ori_shape"][si]
# path = batch["shape"][si][0]
correct_masks = torch.zeros(npr, self.niou, dtype=torch.bool, device=self.device) # init correct_masks = torch.zeros(npr, self.niou, dtype=torch.bool, device=self.device) # init
correct_bboxes = torch.zeros(npr, self.niou, dtype=torch.bool, device=self.device) # init correct_bboxes = torch.zeros(npr, self.niou, dtype=torch.bool, device=self.device) # init
self.seen += 1 self.seen += 1
@ -83,13 +75,13 @@ class SegmentationValidator(DetectionValidator):
if npr == 0: if npr == 0:
if nl: if nl:
self.stats.append((correct_masks, correct_bboxes, *torch.zeros( self.stats.append((correct_masks, correct_bboxes, *torch.zeros(
(2, 0), device=self.device), labels[:, 0])) (2, 0), device=self.device), cls.squeeze(-1)))
if self.args.plots: if self.args.plots:
self.confusion_matrix.process_batch(detections=None, labels=labels[:, 0]) self.confusion_matrix.process_batch(detections=None, labels=cls.squeeze(-1))
continue continue
# Masks # Masks
midx = [si] if self.args.overlap_mask else self.targets[:, 0] == si midx = [si] if self.args.overlap_mask else idx
gt_masks = batch["masks"][midx] gt_masks = batch["masks"][midx]
pred_masks = self.process(proto, pred[:, 6:], pred[:, :4], shape=batch["img"][si].shape[1:]) pred_masks = self.process(proto, pred[:, 6:], pred[:, :4], shape=batch["img"][si].shape[1:])
@ -101,9 +93,9 @@ class SegmentationValidator(DetectionValidator):
# Evaluate # Evaluate
if nl: if nl:
tbox = ops.xywh2xyxy(labels[:, 1:5]) # target boxes tbox = ops.xywh2xyxy(bbox) # target boxes
ops.scale_boxes(batch["img"][si].shape[1:], tbox, shape) # native-space labels ops.scale_boxes(batch["img"][si].shape[1:], tbox, shape) # native-space labels
labelsn = torch.cat((labels[:, 0:1], tbox), 1) # native-space labels labelsn = torch.cat((cls, tbox), 1) # native-space labels
correct_bboxes = self._process_batch(predn, labelsn) correct_bboxes = self._process_batch(predn, labelsn)
# TODO: maybe remove these `self.` arguments as they already are member variable # TODO: maybe remove these `self.` arguments as they already are member variable
correct_masks = self._process_batch(predn, correct_masks = self._process_batch(predn,
@ -114,7 +106,8 @@ class SegmentationValidator(DetectionValidator):
masks=True) masks=True)
if self.args.plots: if self.args.plots:
self.confusion_matrix.process_batch(predn, labelsn) self.confusion_matrix.process_batch(predn, labelsn)
self.stats.append((correct_masks, correct_bboxes, pred[:, 4], pred[:, 5], labels[:, 0])) # conf, pcls, tcls self.stats.append((correct_masks, correct_bboxes, pred[:, 4], pred[:,
5], cls.squeeze(-1))) # conf, pcls, tcls
pred_masks = torch.as_tensor(pred_masks, dtype=torch.uint8) pred_masks = torch.as_tensor(pred_masks, dtype=torch.uint8)
if self.args.plots and self.batch_i < 3: if self.args.plots and self.batch_i < 3:
@ -165,19 +158,6 @@ class SegmentationValidator(DetectionValidator):
correct[matches[:, 1].astype(int), i] = True correct[matches[:, 1].astype(int), i] = True
return torch.tensor(correct, dtype=torch.bool, device=detections.device) return torch.tensor(correct, dtype=torch.bool, device=detections.device)
# TODO: probably add this to class Metrics
@property
def metric_keys(self):
return [
"metrics/precision(B)",
"metrics/recall(B)",
"metrics/mAP50(B)",
"metrics/mAP50-95(B)", # metrics
"metrics/precision(M)",
"metrics/recall(M)",
"metrics/mAP50(M)",
"metrics/mAP50-95(M)",]
def plot_val_samples(self, batch, ni): def plot_val_samples(self, batch, ni):
plot_images(batch["img"], plot_images(batch["img"],
batch["batch_idx"], batch["batch_idx"],
@ -243,8 +223,8 @@ class SegmentationValidator(DetectionValidator):
eval.accumulate() eval.accumulate()
eval.summarize() eval.summarize()
idx = i * 4 + 2 idx = i * 4 + 2
stats[self.metric_keys[idx + 1]], stats[ stats[self.metrics.keys[idx + 1]], stats[
self.metric_keys[idx]] = eval.stats[:2] # update mAP50-95 and mAP50 self.metrics.keys[idx]] = eval.stats[:2] # update mAP50-95 and mAP50
except Exception as e: except Exception as e:
self.logger.warning(f'pycocotools unable to run: {e}') self.logger.warning(f'pycocotools unable to run: {e}')
return stats return stats

Loading…
Cancel
Save