|
|
@ -1,26 +1,26 @@
|
|
|
|
# Ultralytics YOLO 🚀, GPL-3.0 license
|
|
|
|
# Ultralytics YOLO 🚀, GPL-3.0 license
|
|
|
|
# Default training settings and hyperparameters for medium-augmentation COCO training
|
|
|
|
# Default training settings and hyperparameters for medium-augmentation COCO training
|
|
|
|
|
|
|
|
|
|
|
|
task: "detect" # inference task, i.e. detect, segment, classify
|
|
|
|
task: detect # inference task, i.e. detect, segment, classify
|
|
|
|
mode: "train" # YOLO mode, i.e. train, val, predict, export
|
|
|
|
mode: train # YOLO mode, i.e. train, val, predict, export
|
|
|
|
|
|
|
|
|
|
|
|
# Train settings -------------------------------------------------------------------------------------------------------
|
|
|
|
# Train settings -------------------------------------------------------------------------------------------------------
|
|
|
|
model: null # path to model file, i.e. yolov8n.pt, yolov8n.yaml
|
|
|
|
model: # path to model file, i.e. yolov8n.pt, yolov8n.yaml
|
|
|
|
data: null # path to data file, i.e. i.e. coco128.yaml
|
|
|
|
data: # path to data file, i.e. i.e. coco128.yaml
|
|
|
|
epochs: 100 # number of epochs to train for
|
|
|
|
epochs: 100 # number of epochs to train for
|
|
|
|
patience: 50 # epochs to wait for no observable improvement for early stopping of training
|
|
|
|
patience: 50 # epochs to wait for no observable improvement for early stopping of training
|
|
|
|
batch: 16 # number of images per batch (-1 for AutoBatch)
|
|
|
|
batch: 16 # number of images per batch (-1 for AutoBatch)
|
|
|
|
imgsz: 640 # size of input images as integer or w,h
|
|
|
|
imgsz: 640 # size of input images as integer or w,h
|
|
|
|
save: True # save train checkpoints and predict results
|
|
|
|
save: True # save train checkpoints and predict results
|
|
|
|
cache: False # True/ram, disk or False. Use cache for data loading
|
|
|
|
cache: False # True/ram, disk or False. Use cache for data loading
|
|
|
|
device: null # device to run on, i.e. cuda device=0 or device=0,1,2,3 or device=cpu
|
|
|
|
device: # device to run on, i.e. cuda device=0 or device=0,1,2,3 or device=cpu
|
|
|
|
workers: 8 # number of worker threads for data loading (per RANK if DDP)
|
|
|
|
workers: 8 # number of worker threads for data loading (per RANK if DDP)
|
|
|
|
project: null # project name
|
|
|
|
project: # project name
|
|
|
|
name: null # experiment name
|
|
|
|
name: # experiment name
|
|
|
|
exist_ok: False # whether to overwrite existing experiment
|
|
|
|
exist_ok: False # whether to overwrite existing experiment
|
|
|
|
pretrained: False # whether to use a pretrained model
|
|
|
|
pretrained: False # whether to use a pretrained model
|
|
|
|
optimizer: 'SGD' # optimizer to use, choices=['SGD', 'Adam', 'AdamW', 'RMSProp']
|
|
|
|
optimizer: SGD # optimizer to use, choices=['SGD', 'Adam', 'AdamW', 'RMSProp']
|
|
|
|
verbose: False # whether to print verbose output
|
|
|
|
verbose: True # whether to print verbose output
|
|
|
|
seed: 0 # random seed for reproducibility
|
|
|
|
seed: 0 # random seed for reproducibility
|
|
|
|
deterministic: True # whether to enable deterministic mode
|
|
|
|
deterministic: True # whether to enable deterministic mode
|
|
|
|
single_cls: False # train multi-class data as single-class
|
|
|
|
single_cls: False # train multi-class data as single-class
|
|
|
@ -39,7 +39,7 @@ dropout: 0.0 # use dropout regularization (classify train only)
|
|
|
|
val: True # validate/test during training
|
|
|
|
val: True # validate/test during training
|
|
|
|
save_json: False # save results to JSON file
|
|
|
|
save_json: False # save results to JSON file
|
|
|
|
save_hybrid: False # save hybrid version of labels (labels + additional predictions)
|
|
|
|
save_hybrid: False # save hybrid version of labels (labels + additional predictions)
|
|
|
|
conf: null # object confidence threshold for detection (default 0.25 predict, 0.001 val)
|
|
|
|
conf: # object confidence threshold for detection (default 0.25 predict, 0.001 val)
|
|
|
|
iou: 0.7 # intersection over union (IoU) threshold for NMS
|
|
|
|
iou: 0.7 # intersection over union (IoU) threshold for NMS
|
|
|
|
max_det: 300 # maximum number of detections per image
|
|
|
|
max_det: 300 # maximum number of detections per image
|
|
|
|
half: False # use half precision (FP16)
|
|
|
|
half: False # use half precision (FP16)
|
|
|
@ -47,7 +47,7 @@ dnn: False # use OpenCV DNN for ONNX inference
|
|
|
|
plots: True # save plots during train/val
|
|
|
|
plots: True # save plots during train/val
|
|
|
|
|
|
|
|
|
|
|
|
# Prediction settings --------------------------------------------------------------------------------------------------
|
|
|
|
# Prediction settings --------------------------------------------------------------------------------------------------
|
|
|
|
source: null # source directory for images or videos
|
|
|
|
source: # source directory for images or videos
|
|
|
|
show: False # show results if possible
|
|
|
|
show: False # show results if possible
|
|
|
|
save_txt: False # save results as .txt file
|
|
|
|
save_txt: False # save results as .txt file
|
|
|
|
save_conf: False # save results with confidence scores
|
|
|
|
save_conf: False # save results with confidence scores
|
|
|
@ -59,7 +59,7 @@ line_thickness: 3 # bounding box thickness (pixels)
|
|
|
|
visualize: False # visualize model features
|
|
|
|
visualize: False # visualize model features
|
|
|
|
augment: False # apply image augmentation to prediction sources
|
|
|
|
augment: False # apply image augmentation to prediction sources
|
|
|
|
agnostic_nms: False # class-agnostic NMS
|
|
|
|
agnostic_nms: False # class-agnostic NMS
|
|
|
|
classes: null # filter results by class, i.e. class=0, or class=[0,2,3]
|
|
|
|
classes: # filter results by class, i.e. class=0, or class=[0,2,3]
|
|
|
|
retina_masks: False # use high-resolution segmentation masks
|
|
|
|
retina_masks: False # use high-resolution segmentation masks
|
|
|
|
boxes: True # Show boxes in segmentation predictions
|
|
|
|
boxes: True # Show boxes in segmentation predictions
|
|
|
|
|
|
|
|
|
|
|
@ -70,7 +70,7 @@ optimize: False # TorchScript: optimize for mobile
|
|
|
|
int8: False # CoreML/TF INT8 quantization
|
|
|
|
int8: False # CoreML/TF INT8 quantization
|
|
|
|
dynamic: False # ONNX/TF/TensorRT: dynamic axes
|
|
|
|
dynamic: False # ONNX/TF/TensorRT: dynamic axes
|
|
|
|
simplify: False # ONNX: simplify model
|
|
|
|
simplify: False # ONNX: simplify model
|
|
|
|
opset: 17 # ONNX: opset version
|
|
|
|
opset: # ONNX: opset version (optional)
|
|
|
|
workspace: 4 # TensorRT: workspace size (GB)
|
|
|
|
workspace: 4 # TensorRT: workspace size (GB)
|
|
|
|
nms: False # CoreML: add NMS
|
|
|
|
nms: False # CoreML: add NMS
|
|
|
|
|
|
|
|
|
|
|
@ -103,7 +103,7 @@ mixup: 0.0 # image mixup (probability)
|
|
|
|
copy_paste: 0.0 # segment copy-paste (probability)
|
|
|
|
copy_paste: 0.0 # segment copy-paste (probability)
|
|
|
|
|
|
|
|
|
|
|
|
# Custom config.yaml ---------------------------------------------------------------------------------------------------
|
|
|
|
# Custom config.yaml ---------------------------------------------------------------------------------------------------
|
|
|
|
cfg: null # for overriding defaults.yaml
|
|
|
|
cfg: # for overriding defaults.yaml
|
|
|
|
|
|
|
|
|
|
|
|
# Debug, do not modify -------------------------------------------------------------------------------------------------
|
|
|
|
# Debug, do not modify -------------------------------------------------------------------------------------------------
|
|
|
|
v5loader: False # use legacy YOLOv5 dataloader
|
|
|
|
v5loader: False # use legacy YOLOv5 dataloader
|
|
|
|