ultralytics 8.0.20 CLI yolo simplifications, DDP and ONNX fixes (#608)

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Sid Prabhakaran <s2siddhu@gmail.com>
This commit is contained in:
Glenn Jocher
2023-01-25 21:21:39 +01:00
committed by GitHub
parent 59d4335664
commit 15b3b0365a
17 changed files with 242 additions and 139 deletions

View File

@ -1,4 +1,5 @@
# Ultralytics YOLO 🚀, GPL-3.0 license
import sys
import torch
import torchvision
@ -135,22 +136,18 @@ class ClassificationTrainer(BaseTrainer):
# self.run_callbacks('on_fit_epoch_end')
def train(cfg=DEFAULT_CFG):
cfg.model = cfg.model or "yolov8n-cls.pt" # or "resnet18"
cfg.data = cfg.data or "mnist160" # or yolo.ClassificationDataset("mnist")
def train(cfg=DEFAULT_CFG, use_python=False):
model = cfg.model or "yolov8n-cls.pt" # or "resnet18"
data = cfg.data or "mnist160" # or yolo.ClassificationDataset("mnist")
device = cfg.device if cfg.device is not None else ''
# Reproduce ImageNet results
# cfg.lr0 = 0.1
# cfg.weight_decay = 5e-5
# cfg.label_smoothing = 0.1
# cfg.warmup_epochs = 0.0
cfg.device = cfg.device if cfg.device is not None else ''
# trainer = ClassificationTrainer(cfg)
# trainer.train()
from ultralytics import YOLO
model = YOLO(cfg.model)
model.train(**vars(cfg))
args = dict(model=model, data=data, device=device, verbose=True)
if use_python:
from ultralytics import YOLO
YOLO(model).train(**args)
else:
trainer = ClassificationTrainer(args)
trainer.train()
if __name__ == "__main__":