ultralytics 8.0.20 CLI yolo simplifications, DDP and ONNX fixes (#608)

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Sid Prabhakaran <s2siddhu@gmail.com>
This commit is contained in:
Glenn Jocher
2023-01-25 21:21:39 +01:00
committed by GitHub
parent 59d4335664
commit 15b3b0365a
17 changed files with 242 additions and 139 deletions

View File

@ -1,4 +1,5 @@
# Ultralytics YOLO 🚀, GPL-3.0 license
import sys
import torch
@ -63,12 +64,18 @@ class ClassificationPredictor(BasePredictor):
return log_string
def predict(cfg=DEFAULT_CFG):
cfg.model = cfg.model or "yolov8n-cls.pt" # or "resnet18"
cfg.source = cfg.source if cfg.source is not None else ROOT / "assets" if (ROOT / "assets").exists() \
def predict(cfg=DEFAULT_CFG, use_python=False):
model = cfg.model or "yolov8n-cls.pt" # or "resnet18"
source = cfg.source if cfg.source is not None else ROOT / "assets" if (ROOT / "assets").exists() \
else "https://ultralytics.com/images/bus.jpg"
predictor = ClassificationPredictor(cfg)
predictor.predict_cli()
args = dict(model=model, source=source, verbose=True)
if use_python:
from ultralytics import YOLO
YOLO(model)(**args)
else:
predictor = ClassificationPredictor(args)
predictor.predict_cli()
if __name__ == "__main__":

View File

@ -1,4 +1,5 @@
# Ultralytics YOLO 🚀, GPL-3.0 license
import sys
import torch
import torchvision
@ -135,22 +136,18 @@ class ClassificationTrainer(BaseTrainer):
# self.run_callbacks('on_fit_epoch_end')
def train(cfg=DEFAULT_CFG):
cfg.model = cfg.model or "yolov8n-cls.pt" # or "resnet18"
cfg.data = cfg.data or "mnist160" # or yolo.ClassificationDataset("mnist")
def train(cfg=DEFAULT_CFG, use_python=False):
model = cfg.model or "yolov8n-cls.pt" # or "resnet18"
data = cfg.data or "mnist160" # or yolo.ClassificationDataset("mnist")
device = cfg.device if cfg.device is not None else ''
# Reproduce ImageNet results
# cfg.lr0 = 0.1
# cfg.weight_decay = 5e-5
# cfg.label_smoothing = 0.1
# cfg.warmup_epochs = 0.0
cfg.device = cfg.device if cfg.device is not None else ''
# trainer = ClassificationTrainer(cfg)
# trainer.train()
from ultralytics import YOLO
model = YOLO(cfg.model)
model.train(**vars(cfg))
args = dict(model=model, data=data, device=device, verbose=True)
if use_python:
from ultralytics import YOLO
YOLO(model).train(**args)
else:
trainer = ClassificationTrainer(args)
trainer.train()
if __name__ == "__main__":

View File

@ -1,4 +1,5 @@
# Ultralytics YOLO 🚀, GPL-3.0 license
import sys
from ultralytics.yolo.data import build_classification_dataloader
from ultralytics.yolo.engine.validator import BaseValidator
@ -45,11 +46,17 @@ class ClassificationValidator(BaseValidator):
self.logger.info(pf % ("all", self.metrics.top1, self.metrics.top5))
def val(cfg=DEFAULT_CFG):
cfg.model = cfg.model or "yolov8n-cls.pt" # or "resnet18"
cfg.data = cfg.data or "mnist160"
validator = ClassificationValidator(args=cfg)
validator(model=cfg.model)
def val(cfg=DEFAULT_CFG, use_python=False):
model = cfg.model or "yolov8n-cls.pt" # or "resnet18"
data = cfg.data or "mnist160"
args = dict(model=model, data=data, verbose=True)
if use_python:
from ultralytics import YOLO
YOLO(model).val(**args)
else:
validator = ClassificationValidator(args=args)
validator(model=args['model'])
if __name__ == "__main__":

View File

@ -1,4 +1,5 @@
# Ultralytics YOLO 🚀, GPL-3.0 license
import sys
import torch
@ -81,12 +82,18 @@ class DetectionPredictor(BasePredictor):
return log_string
def predict(cfg=DEFAULT_CFG):
cfg.model = cfg.model or "yolov8n.pt"
cfg.source = cfg.source if cfg.source is not None else ROOT / "assets" if (ROOT / "assets").exists() \
def predict(cfg=DEFAULT_CFG, use_python=False):
model = cfg.model or "yolov8n.pt"
source = cfg.source if cfg.source is not None else ROOT / "assets" if (ROOT / "assets").exists() \
else "https://ultralytics.com/images/bus.jpg"
predictor = DetectionPredictor(cfg)
predictor.predict_cli()
args = dict(model=model, source=source, verbose=True)
if use_python:
from ultralytics import YOLO
YOLO(model)(**args)
else:
predictor = DetectionPredictor(args)
predictor.predict_cli()
if __name__ == "__main__":

View File

@ -1,5 +1,5 @@
# Ultralytics YOLO 🚀, GPL-3.0 license
import sys
from copy import copy
import torch
@ -194,15 +194,18 @@ class Loss:
return loss.sum() * batch_size, loss.detach() # loss(box, cls, dfl)
def train(cfg=DEFAULT_CFG):
cfg.model = cfg.model or "yolov8n.pt"
cfg.data = cfg.data or "coco128.yaml" # or yolo.ClassificationDataset("mnist")
cfg.device = cfg.device if cfg.device is not None else ''
# trainer = DetectionTrainer(cfg)
# trainer.train()
from ultralytics import YOLO
model = YOLO(cfg.model)
model.train(**vars(cfg))
def train(cfg=DEFAULT_CFG, use_python=False):
model = cfg.model or "yolov8n.pt"
data = cfg.data or "coco128.yaml" # or yolo.ClassificationDataset("mnist")
device = cfg.device if cfg.device is not None else ''
args = dict(model=model, data=data, device=device, verbose=True)
if use_python:
from ultralytics import YOLO
YOLO(model).train(**args)
else:
trainer = DetectionTrainer(args)
trainer.train()
if __name__ == "__main__":

View File

@ -1,6 +1,7 @@
# Ultralytics YOLO 🚀, GPL-3.0 license
import os
import sys
from pathlib import Path
import numpy as np
@ -232,11 +233,17 @@ class DetectionValidator(BaseValidator):
return stats
def val(cfg=DEFAULT_CFG):
cfg.model = cfg.model or "yolov8n.pt"
cfg.data = cfg.data or "coco128.yaml"
validator = DetectionValidator(args=cfg)
validator(model=cfg.model)
def val(cfg=DEFAULT_CFG, use_python=False):
model = cfg.model or "yolov8n.pt"
data = cfg.data or "coco128.yaml"
args = dict(model=model, data=data, verbose=True)
if use_python:
from ultralytics import YOLO
YOLO(model).val(**args)
else:
validator = DetectionValidator(args=args)
validator(model=args['model'])
if __name__ == "__main__":

View File

@ -1,5 +1,7 @@
# Ultralytics YOLO 🚀, GPL-3.0 license
import sys
import torch
from ultralytics.yolo.engine.results import Results
@ -98,12 +100,18 @@ class SegmentationPredictor(DetectionPredictor):
return log_string
def predict(cfg=DEFAULT_CFG):
cfg.model = cfg.model or "yolov8n-seg.pt"
cfg.source = cfg.source if cfg.source is not None else ROOT / "assets" if (ROOT / "assets").exists() \
def predict(cfg=DEFAULT_CFG, use_python=False):
model = cfg.model or "yolov8n-seg.pt"
source = cfg.source if cfg.source is not None else ROOT / "assets" if (ROOT / "assets").exists() \
else "https://ultralytics.com/images/bus.jpg"
predictor = SegmentationPredictor(cfg)
predictor.predict_cli()
args = dict(model=model, source=source, verbose=True)
if use_python:
from ultralytics import YOLO
YOLO(model)(**args)
else:
predictor = SegmentationPredictor(args)
predictor.predict_cli()
if __name__ == "__main__":

View File

@ -1,5 +1,5 @@
# Ultralytics YOLO 🚀, GPL-3.0 license
import sys
from copy import copy
import torch
@ -140,15 +140,18 @@ class SegLoss(Loss):
return (crop_mask(loss, xyxy).mean(dim=(1, 2)) / area).mean()
def train(cfg=DEFAULT_CFG):
cfg.model = cfg.model or "yolov8n-seg.pt"
cfg.data = cfg.data or "coco128-seg.yaml" # or yolo.ClassificationDataset("mnist")
cfg.device = cfg.device if cfg.device is not None else ''
# trainer = SegmentationTrainer(cfg)
# trainer.train()
from ultralytics import YOLO
model = YOLO(cfg.model)
model.train(**vars(cfg))
def train(cfg=DEFAULT_CFG, use_python=False):
model = cfg.model or "yolov8n-seg.pt"
data = cfg.data or "coco128-seg.yaml" # or yolo.ClassificationDataset("mnist")
device = cfg.device if cfg.device is not None else ''
args = dict(model=model, data=data, device=device, verbose=True)
if use_python:
from ultralytics import YOLO
YOLO(model).train(**args)
else:
trainer = SegmentationTrainer(args)
trainer.train()
if __name__ == "__main__":

View File

@ -1,6 +1,7 @@
# Ultralytics YOLO 🚀, GPL-3.0 license
import os
import sys
from multiprocessing.pool import ThreadPool
from pathlib import Path
@ -242,10 +243,17 @@ class SegmentationValidator(DetectionValidator):
return stats
def val(cfg=DEFAULT_CFG):
cfg.data = cfg.data or "coco128-seg.yaml"
validator = SegmentationValidator(args=cfg)
validator(model=cfg.model)
def val(cfg=DEFAULT_CFG, use_python=False):
model = cfg.model or "yolov8n-seg.pt"
data = cfg.data or "coco128-seg.yaml"
args = dict(model=model, data=data, verbose=True)
if use_python:
from ultralytics import YOLO
YOLO(model).val(**args)
else:
validator = SegmentationValidator(args=args)
validator(model=args['model'])
if __name__ == "__main__":