|
|
|
@ -82,10 +82,10 @@ class Results(SimpleClass):
|
|
|
|
|
boxes (Boxes, optional): A Boxes object containing the detection bounding boxes.
|
|
|
|
|
masks (Masks, optional): A Masks object containing the detection masks.
|
|
|
|
|
probs (Probs, optional): A Probs object containing probabilities of each class for classification task.
|
|
|
|
|
keypoints (Keypoints, optional): A Keypoints object containing detected keypoints for each object.
|
|
|
|
|
speed (dict): A dictionary of preprocess, inference, and postprocess speeds in milliseconds per image.
|
|
|
|
|
names (dict): A dictionary of class names.
|
|
|
|
|
path (str): The path to the image file.
|
|
|
|
|
keypoints (Keypoints, optional): A Keypoints object containing detected keypoints for each object.
|
|
|
|
|
speed (dict): A dictionary of preprocess, inference and postprocess speeds in milliseconds per image.
|
|
|
|
|
_keys (tuple): A tuple of attribute names for non-empty attributes.
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
@ -110,6 +110,11 @@ class Results(SimpleClass):
|
|
|
|
|
setattr(r, k, getattr(self, k)[idx])
|
|
|
|
|
return r
|
|
|
|
|
|
|
|
|
|
def __len__(self):
|
|
|
|
|
"""Return the number of detections in the Results object."""
|
|
|
|
|
for k in self.keys:
|
|
|
|
|
return len(getattr(self, k))
|
|
|
|
|
|
|
|
|
|
def update(self, boxes=None, masks=None, probs=None):
|
|
|
|
|
"""Update the boxes, masks, and probs attributes of the Results object."""
|
|
|
|
|
if boxes is not None:
|
|
|
|
@ -148,11 +153,6 @@ class Results(SimpleClass):
|
|
|
|
|
setattr(r, k, getattr(self, k).to(*args, **kwargs))
|
|
|
|
|
return r
|
|
|
|
|
|
|
|
|
|
def __len__(self):
|
|
|
|
|
"""Return the number of detections in the Results object."""
|
|
|
|
|
for k in self.keys:
|
|
|
|
|
return len(getattr(self, k))
|
|
|
|
|
|
|
|
|
|
def new(self):
|
|
|
|
|
"""Return a new Results object with the same image, path, and names."""
|
|
|
|
|
return Results(orig_img=self.orig_img, path=self.path, names=self.names)
|
|
|
|
@ -199,6 +199,18 @@ class Results(SimpleClass):
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
(numpy.ndarray): A numpy array of the annotated image.
|
|
|
|
|
|
|
|
|
|
Example:
|
|
|
|
|
```python
|
|
|
|
|
from PIL import Image
|
|
|
|
|
from ultralytics import YOLO
|
|
|
|
|
|
|
|
|
|
model = YOLO('yolov8n.pt')
|
|
|
|
|
results = model('bus.jpg') # results list
|
|
|
|
|
for r in results:
|
|
|
|
|
im = r.plot() # BGR numpy array
|
|
|
|
|
Image.fromarray(im[..., ::-1]).show() # show RGB image
|
|
|
|
|
```
|
|
|
|
|
"""
|
|
|
|
|
if img is None and isinstance(self.orig_img, torch.Tensor):
|
|
|
|
|
img = np.ascontiguousarray(self.orig_img[0].permute(1, 2, 0).cpu().detach().numpy()) * 255
|
|
|
|
@ -328,10 +340,6 @@ class Results(SimpleClass):
|
|
|
|
|
file=save_dir / self.names[int(d.cls)] / f'{file_name.stem}.jpg',
|
|
|
|
|
BGR=True)
|
|
|
|
|
|
|
|
|
|
def pandas(self):
|
|
|
|
|
"""Convert the object to a pandas DataFrame (not yet implemented)."""
|
|
|
|
|
LOGGER.warning("WARNING ⚠️ 'Results.pandas' method is not yet implemented.")
|
|
|
|
|
|
|
|
|
|
def tojson(self, normalize=False):
|
|
|
|
|
"""Convert the object to JSON format."""
|
|
|
|
|
if self.probs is not None:
|
|
|
|
@ -368,15 +376,11 @@ class Boxes(BaseTensor):
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
boxes (torch.Tensor | numpy.ndarray): A tensor or numpy array containing the detection boxes,
|
|
|
|
|
with shape (num_boxes, 6). The last two columns should contain confidence and class values.
|
|
|
|
|
with shape (num_boxes, 6) or (num_boxes, 7). The last two columns contain confidence and class values.
|
|
|
|
|
If present, the third last column contains track IDs.
|
|
|
|
|
orig_shape (tuple): Original image size, in the format (height, width).
|
|
|
|
|
|
|
|
|
|
Attributes:
|
|
|
|
|
boxes (torch.Tensor | numpy.ndarray): The detection boxes with shape (num_boxes, 6).
|
|
|
|
|
orig_shape (torch.Tensor | numpy.ndarray): Original image size, in the format (height, width).
|
|
|
|
|
is_track (bool): True if the boxes also include track IDs, False otherwise.
|
|
|
|
|
|
|
|
|
|
Properties:
|
|
|
|
|
xyxy (torch.Tensor | numpy.ndarray): The boxes in xyxy format.
|
|
|
|
|
conf (torch.Tensor | numpy.ndarray): The confidence values of the boxes.
|
|
|
|
|
cls (torch.Tensor | numpy.ndarray): The class values of the boxes.
|
|
|
|
@ -384,14 +388,13 @@ class Boxes(BaseTensor):
|
|
|
|
|
xywh (torch.Tensor | numpy.ndarray): The boxes in xywh format.
|
|
|
|
|
xyxyn (torch.Tensor | numpy.ndarray): The boxes in xyxy format normalized by original image size.
|
|
|
|
|
xywhn (torch.Tensor | numpy.ndarray): The boxes in xywh format normalized by original image size.
|
|
|
|
|
data (torch.Tensor): The raw bboxes tensor
|
|
|
|
|
data (torch.Tensor): The raw bboxes tensor (alias for `boxes`).
|
|
|
|
|
|
|
|
|
|
Methods:
|
|
|
|
|
cpu(): Move the object to CPU memory.
|
|
|
|
|
numpy(): Convert the object to a numpy array.
|
|
|
|
|
cuda(): Move the object to CUDA memory.
|
|
|
|
|
to(*args, **kwargs): Move the object to the specified device.
|
|
|
|
|
pandas(): Convert the object to a pandas DataFrame (not yet implemented).
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
def __init__(self, boxes, orig_shape) -> None:
|
|
|
|
@ -459,27 +462,20 @@ class Masks(BaseTensor):
|
|
|
|
|
"""
|
|
|
|
|
A class for storing and manipulating detection masks.
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
masks (torch.Tensor | np.ndarray): A tensor containing the detection masks, with shape (num_masks, height, width).
|
|
|
|
|
orig_shape (tuple): Original image size, in the format (height, width).
|
|
|
|
|
|
|
|
|
|
Attributes:
|
|
|
|
|
masks (torch.Tensor | np.ndarray): A tensor containing the detection masks, with shape (num_masks, height, width).
|
|
|
|
|
orig_shape (tuple): Original image size, in the format (height, width).
|
|
|
|
|
|
|
|
|
|
Properties:
|
|
|
|
|
xy (list): A list of segments (pixels) which includes x, y segments of each detection.
|
|
|
|
|
xyn (list): A list of segments (normalized) which includes x, y segments of each detection.
|
|
|
|
|
segments (list): Deprecated property for segments (normalized).
|
|
|
|
|
xy (list): A list of segments in pixel coordinates.
|
|
|
|
|
xyn (list): A list of normalized segments.
|
|
|
|
|
|
|
|
|
|
Methods:
|
|
|
|
|
cpu(): Returns a copy of the masks tensor on CPU memory.
|
|
|
|
|
numpy(): Returns a copy of the masks tensor as a numpy array.
|
|
|
|
|
cuda(): Returns a copy of the masks tensor on GPU memory.
|
|
|
|
|
to(): Returns a copy of the masks tensor with the specified device and dtype.
|
|
|
|
|
cpu(): Returns the masks tensor on CPU memory.
|
|
|
|
|
numpy(): Returns the masks tensor as a numpy array.
|
|
|
|
|
cuda(): Returns the masks tensor on GPU memory.
|
|
|
|
|
to(device, dtype): Returns the masks tensor with the specified device and dtype.
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
def __init__(self, masks, orig_shape) -> None:
|
|
|
|
|
"""Initialize the Masks class."""
|
|
|
|
|
"""Initialize the Masks class with the given masks tensor and original image shape."""
|
|
|
|
|
if masks.ndim == 2:
|
|
|
|
|
masks = masks[None, :]
|
|
|
|
|
super().__init__(masks, orig_shape)
|
|
|
|
@ -487,15 +483,16 @@ class Masks(BaseTensor):
|
|
|
|
|
@property
|
|
|
|
|
@lru_cache(maxsize=1)
|
|
|
|
|
def segments(self):
|
|
|
|
|
"""Return segments (deprecated; normalized)."""
|
|
|
|
|
LOGGER.warning("WARNING ⚠️ 'Masks.segments' is deprecated. Use 'Masks.xyn' for segments (normalized) and "
|
|
|
|
|
"'Masks.xy' for segments (pixels) instead.")
|
|
|
|
|
"""Return segments (normalized). Deprecated; use xyn property instead."""
|
|
|
|
|
LOGGER.warning(
|
|
|
|
|
"WARNING ⚠️ 'Masks.segments' is deprecated. Use 'Masks.xyn' for segments (normalized) and 'Masks.xy' for segments (pixels) instead."
|
|
|
|
|
)
|
|
|
|
|
return self.xyn
|
|
|
|
|
|
|
|
|
|
@property
|
|
|
|
|
@lru_cache(maxsize=1)
|
|
|
|
|
def xyn(self):
|
|
|
|
|
"""Return segments (normalized)."""
|
|
|
|
|
"""Return normalized segments."""
|
|
|
|
|
return [
|
|
|
|
|
ops.scale_coords(self.data.shape[1:], x, self.orig_shape, normalize=True)
|
|
|
|
|
for x in ops.masks2segments(self.data)]
|
|
|
|
@ -503,46 +500,36 @@ class Masks(BaseTensor):
|
|
|
|
|
@property
|
|
|
|
|
@lru_cache(maxsize=1)
|
|
|
|
|
def xy(self):
|
|
|
|
|
"""Return segments (pixels)."""
|
|
|
|
|
"""Return segments in pixel coordinates."""
|
|
|
|
|
return [
|
|
|
|
|
ops.scale_coords(self.data.shape[1:], x, self.orig_shape, normalize=False)
|
|
|
|
|
for x in ops.masks2segments(self.data)]
|
|
|
|
|
|
|
|
|
|
@property
|
|
|
|
|
def masks(self):
|
|
|
|
|
"""Return the raw masks tensor (deprecated)."""
|
|
|
|
|
"""Return the raw masks tensor. Deprecated; use data attribute instead."""
|
|
|
|
|
LOGGER.warning("WARNING ⚠️ 'Masks.masks' is deprecated. Use 'Masks.data' instead.")
|
|
|
|
|
return self.data
|
|
|
|
|
|
|
|
|
|
def pandas(self):
|
|
|
|
|
"""Convert the object to a pandas DataFrame (not yet implemented)."""
|
|
|
|
|
LOGGER.warning("WARNING ⚠️ 'Masks.pandas' method is not yet implemented.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class Keypoints(BaseTensor):
|
|
|
|
|
"""
|
|
|
|
|
A class for storing and manipulating detection keypoints.
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
keypoints (torch.Tensor | np.ndarray): A tensor containing the detection keypoints, with shape (num_dets, num_kpts, 2/3).
|
|
|
|
|
orig_shape (tuple): Original image size, in the format (height, width).
|
|
|
|
|
|
|
|
|
|
Attributes:
|
|
|
|
|
keypoints (torch.Tensor | np.ndarray): A tensor containing the detection keypoints, with shape (num_dets, num_kpts, 2/3).
|
|
|
|
|
orig_shape (tuple): Original image size, in the format (height, width).
|
|
|
|
|
|
|
|
|
|
Properties:
|
|
|
|
|
xy (list): A list of keypoints (pixels) which includes x, y keypoints of each detection.
|
|
|
|
|
xyn (list): A list of keypoints (normalized) which includes x, y keypoints of each detection.
|
|
|
|
|
xy (torch.Tensor): A collection of keypoints containing x, y coordinates for each detection.
|
|
|
|
|
xyn (torch.Tensor): A normalized version of xy with coordinates in the range [0, 1].
|
|
|
|
|
conf (torch.Tensor): Confidence values associated with keypoints if available, otherwise None.
|
|
|
|
|
|
|
|
|
|
Methods:
|
|
|
|
|
cpu(): Returns a copy of the keypoints tensor on CPU memory.
|
|
|
|
|
numpy(): Returns a copy of the keypoints tensor as a numpy array.
|
|
|
|
|
cuda(): Returns a copy of the keypoints tensor on GPU memory.
|
|
|
|
|
to(): Returns a copy of the keypoints tensor with the specified device and dtype.
|
|
|
|
|
to(device, dtype): Returns a copy of the keypoints tensor with the specified device and dtype.
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
def __init__(self, keypoints, orig_shape) -> None:
|
|
|
|
|
"""Initializes the Keypoints object with detection keypoints and original image size."""
|
|
|
|
|
if keypoints.ndim == 2:
|
|
|
|
|
keypoints = keypoints[None, :]
|
|
|
|
|
super().__init__(keypoints, orig_shape)
|
|
|
|
@ -551,11 +538,13 @@ class Keypoints(BaseTensor):
|
|
|
|
|
@property
|
|
|
|
|
@lru_cache(maxsize=1)
|
|
|
|
|
def xy(self):
|
|
|
|
|
"""Returns x, y coordinates of keypoints."""
|
|
|
|
|
return self.data[..., :2]
|
|
|
|
|
|
|
|
|
|
@property
|
|
|
|
|
@lru_cache(maxsize=1)
|
|
|
|
|
def xyn(self):
|
|
|
|
|
"""Returns normalized x, y coordinates of keypoints."""
|
|
|
|
|
xy = self.xy.clone() if isinstance(self.xy, torch.Tensor) else np.copy(self.xy)
|
|
|
|
|
xy[..., 0] /= self.orig_shape[1]
|
|
|
|
|
xy[..., 1] /= self.orig_shape[0]
|
|
|
|
@ -564,22 +553,19 @@ class Keypoints(BaseTensor):
|
|
|
|
|
@property
|
|
|
|
|
@lru_cache(maxsize=1)
|
|
|
|
|
def conf(self):
|
|
|
|
|
"""Returns confidence values of keypoints if available, else None."""
|
|
|
|
|
return self.data[..., 2] if self.has_visible else None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class Probs(BaseTensor):
|
|
|
|
|
"""
|
|
|
|
|
A class for storing and manipulating classify predictions.
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
probs (torch.Tensor | np.ndarray): A tensor containing the detection keypoints, with shape (num_class, ).
|
|
|
|
|
A class for storing and manipulating classification predictions.
|
|
|
|
|
|
|
|
|
|
Attributes:
|
|
|
|
|
probs (torch.Tensor | np.ndarray): A tensor containing the detection keypoints, with shape (num_class).
|
|
|
|
|
|
|
|
|
|
Properties:
|
|
|
|
|
top5 (list[int]): Top 1 indice.
|
|
|
|
|
top1 (int): Top 5 indices.
|
|
|
|
|
top1 (int): Index of the top 1 class.
|
|
|
|
|
top5 (list[int]): Indices of the top 5 classes.
|
|
|
|
|
top1conf (torch.Tensor): Confidence of the top 1 class.
|
|
|
|
|
top5conf (torch.Tensor): Confidences of the top 5 classes.
|
|
|
|
|
|
|
|
|
|
Methods:
|
|
|
|
|
cpu(): Returns a copy of the probs tensor on CPU memory.
|
|
|
|
@ -591,6 +577,12 @@ class Probs(BaseTensor):
|
|
|
|
|
def __init__(self, probs, orig_shape=None) -> None:
|
|
|
|
|
super().__init__(probs, orig_shape)
|
|
|
|
|
|
|
|
|
|
@property
|
|
|
|
|
@lru_cache(maxsize=1)
|
|
|
|
|
def top1(self):
|
|
|
|
|
"""Return the index of top 1."""
|
|
|
|
|
return int(self.data.argmax())
|
|
|
|
|
|
|
|
|
|
@property
|
|
|
|
|
@lru_cache(maxsize=1)
|
|
|
|
|
def top5(self):
|
|
|
|
@ -599,18 +591,12 @@ class Probs(BaseTensor):
|
|
|
|
|
|
|
|
|
|
@property
|
|
|
|
|
@lru_cache(maxsize=1)
|
|
|
|
|
def top1(self):
|
|
|
|
|
"""Return the indices of top 1."""
|
|
|
|
|
return int(self.data.argmax())
|
|
|
|
|
def top1conf(self):
|
|
|
|
|
"""Return the confidence of top 1."""
|
|
|
|
|
return self.data[self.top1]
|
|
|
|
|
|
|
|
|
|
@property
|
|
|
|
|
@lru_cache(maxsize=1)
|
|
|
|
|
def top5conf(self):
|
|
|
|
|
"""Return the confidences of top 5."""
|
|
|
|
|
return self.data[self.top5]
|
|
|
|
|
|
|
|
|
|
@property
|
|
|
|
|
@lru_cache(maxsize=1)
|
|
|
|
|
def top1conf(self):
|
|
|
|
|
"""Return the confidences of top 1."""
|
|
|
|
|
return self.data[self.top1]
|
|
|
|
|