Add initial model interface (#30)
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>single_channel
parent
7b560f7861
commit
1054819a59
@ -0,0 +1,13 @@
|
||||
from ultralytics.yolo import YOLO
|
||||
|
||||
|
||||
def test_model():
|
||||
model = YOLO()
|
||||
model.new("assets/dummy_model.yaml")
|
||||
model.model = "squeezenet1_0" # temp solution before get_model is implemented
|
||||
# model.load("yolov5n.pt")
|
||||
model.train(data="imagenette160", epochs=1, lr0=0.01)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
test_model()
|
@ -1,4 +1,7 @@
|
||||
import ultralytics.yolo.v8 as v8
|
||||
|
||||
from .engine.model import YOLO
|
||||
from .engine.trainer import BaseTrainer
|
||||
from .engine.validator import BaseValidator
|
||||
|
||||
__all__ = ["BaseTrainer", "BaseValidator"] # allow simpler import
|
||||
__all__ = ["BaseTrainer", "BaseValidator", "YOLO"] # allow simpler import
|
||||
|
@ -0,0 +1,63 @@
|
||||
"""
|
||||
Top-level YOLO model interface. First principle usage example - https://github.com/ultralytics/ultralytics/issues/13
|
||||
"""
|
||||
import torch
|
||||
import yaml
|
||||
|
||||
import ultralytics.yolo as yolo
|
||||
from ultralytics.yolo.utils import LOGGER
|
||||
from ultralytics.yolo.utils.checks import check_yaml
|
||||
from ultralytics.yolo.utils.modeling.tasks import ClassificationModel, DetectionModel, SegmentationModel
|
||||
|
||||
# map head: [model, trainer]
|
||||
MODEL_MAP = {
|
||||
"Classify": [ClassificationModel, 'yolo.VERSION.classify.train.ClassificationTrainer'],
|
||||
"Detect": [ClassificationModel, 'yolo.VERSION.classify.train.ClassificationTrainer'], # temp
|
||||
"Segment": []}
|
||||
|
||||
|
||||
class YOLO:
|
||||
|
||||
def __init__(self, version=8) -> None:
|
||||
self.version = version
|
||||
self.model = None
|
||||
self.trainer = None
|
||||
self.pretrained_weights = None
|
||||
|
||||
def new(self, cfg: str):
|
||||
cfg = check_yaml(cfg) # check YAML
|
||||
self.model, self.trainer = self._get_model_and_trainer(cfg)
|
||||
|
||||
def load(self, weights, autodownload=True):
|
||||
if not isinstance(self.pretrained_weights, type(None)):
|
||||
LOGGER.info("Overwriting weights")
|
||||
# TODO: weights = smart_file_loader(weights)
|
||||
if self.model:
|
||||
self.model.load(weights)
|
||||
LOGGER.info("Checkpoint loaded successfully")
|
||||
else:
|
||||
# TODO: infer model and trainer
|
||||
pass
|
||||
|
||||
self.pretrained_weights = weights
|
||||
|
||||
def reset(self):
|
||||
pass
|
||||
|
||||
def train(self, **kwargs):
|
||||
if 'data' not in kwargs:
|
||||
raise Exception("data is required to train")
|
||||
if not self.model:
|
||||
raise Exception("model not initialized. Use .new() or .load()")
|
||||
kwargs["model"] = self.model
|
||||
trainer = self.trainer(overrides=kwargs)
|
||||
trainer.train()
|
||||
|
||||
def _get_model_and_trainer(self, cfg):
|
||||
with open(cfg, encoding='ascii', errors='ignore') as f:
|
||||
cfg = yaml.safe_load(f) # model dict
|
||||
model, trainer = MODEL_MAP[cfg["head"][-1][-2]]
|
||||
# warning: eval is unsafe. Use with caution
|
||||
trainer = eval(trainer.replace("VERSION", f"v{self.version}"))
|
||||
|
||||
return model(cfg), trainer
|
@ -1,3 +1,4 @@
|
||||
from ultralytics.yolo.v8.classify import train
|
||||
from ultralytics.yolo.v8.classify.train import ClassificationTrainer
|
||||
from ultralytics.yolo.v8.classify.val import ClassificationValidator
|
||||
|
||||
__all__ = ["train"]
|
||||
|
Loading…
Reference in new issue