Add initial model interface (#30)
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>single_channel
parent
7b560f7861
commit
1054819a59
@ -0,0 +1,13 @@
|
|||||||
|
from ultralytics.yolo import YOLO
|
||||||
|
|
||||||
|
|
||||||
|
def test_model():
|
||||||
|
model = YOLO()
|
||||||
|
model.new("assets/dummy_model.yaml")
|
||||||
|
model.model = "squeezenet1_0" # temp solution before get_model is implemented
|
||||||
|
# model.load("yolov5n.pt")
|
||||||
|
model.train(data="imagenette160", epochs=1, lr0=0.01)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
test_model()
|
@ -1,4 +1,7 @@
|
|||||||
|
import ultralytics.yolo.v8 as v8
|
||||||
|
|
||||||
|
from .engine.model import YOLO
|
||||||
from .engine.trainer import BaseTrainer
|
from .engine.trainer import BaseTrainer
|
||||||
from .engine.validator import BaseValidator
|
from .engine.validator import BaseValidator
|
||||||
|
|
||||||
__all__ = ["BaseTrainer", "BaseValidator"] # allow simpler import
|
__all__ = ["BaseTrainer", "BaseValidator", "YOLO"] # allow simpler import
|
||||||
|
@ -0,0 +1,63 @@
|
|||||||
|
"""
|
||||||
|
Top-level YOLO model interface. First principle usage example - https://github.com/ultralytics/ultralytics/issues/13
|
||||||
|
"""
|
||||||
|
import torch
|
||||||
|
import yaml
|
||||||
|
|
||||||
|
import ultralytics.yolo as yolo
|
||||||
|
from ultralytics.yolo.utils import LOGGER
|
||||||
|
from ultralytics.yolo.utils.checks import check_yaml
|
||||||
|
from ultralytics.yolo.utils.modeling.tasks import ClassificationModel, DetectionModel, SegmentationModel
|
||||||
|
|
||||||
|
# map head: [model, trainer]
|
||||||
|
MODEL_MAP = {
|
||||||
|
"Classify": [ClassificationModel, 'yolo.VERSION.classify.train.ClassificationTrainer'],
|
||||||
|
"Detect": [ClassificationModel, 'yolo.VERSION.classify.train.ClassificationTrainer'], # temp
|
||||||
|
"Segment": []}
|
||||||
|
|
||||||
|
|
||||||
|
class YOLO:
|
||||||
|
|
||||||
|
def __init__(self, version=8) -> None:
|
||||||
|
self.version = version
|
||||||
|
self.model = None
|
||||||
|
self.trainer = None
|
||||||
|
self.pretrained_weights = None
|
||||||
|
|
||||||
|
def new(self, cfg: str):
|
||||||
|
cfg = check_yaml(cfg) # check YAML
|
||||||
|
self.model, self.trainer = self._get_model_and_trainer(cfg)
|
||||||
|
|
||||||
|
def load(self, weights, autodownload=True):
|
||||||
|
if not isinstance(self.pretrained_weights, type(None)):
|
||||||
|
LOGGER.info("Overwriting weights")
|
||||||
|
# TODO: weights = smart_file_loader(weights)
|
||||||
|
if self.model:
|
||||||
|
self.model.load(weights)
|
||||||
|
LOGGER.info("Checkpoint loaded successfully")
|
||||||
|
else:
|
||||||
|
# TODO: infer model and trainer
|
||||||
|
pass
|
||||||
|
|
||||||
|
self.pretrained_weights = weights
|
||||||
|
|
||||||
|
def reset(self):
|
||||||
|
pass
|
||||||
|
|
||||||
|
def train(self, **kwargs):
|
||||||
|
if 'data' not in kwargs:
|
||||||
|
raise Exception("data is required to train")
|
||||||
|
if not self.model:
|
||||||
|
raise Exception("model not initialized. Use .new() or .load()")
|
||||||
|
kwargs["model"] = self.model
|
||||||
|
trainer = self.trainer(overrides=kwargs)
|
||||||
|
trainer.train()
|
||||||
|
|
||||||
|
def _get_model_and_trainer(self, cfg):
|
||||||
|
with open(cfg, encoding='ascii', errors='ignore') as f:
|
||||||
|
cfg = yaml.safe_load(f) # model dict
|
||||||
|
model, trainer = MODEL_MAP[cfg["head"][-1][-2]]
|
||||||
|
# warning: eval is unsafe. Use with caution
|
||||||
|
trainer = eval(trainer.replace("VERSION", f"v{self.version}"))
|
||||||
|
|
||||||
|
return model(cfg), trainer
|
@ -1,3 +1,4 @@
|
|||||||
from ultralytics.yolo.v8.classify import train
|
from ultralytics.yolo.v8.classify.train import ClassificationTrainer
|
||||||
|
from ultralytics.yolo.v8.classify.val import ClassificationValidator
|
||||||
|
|
||||||
__all__ = ["train"]
|
__all__ = ["train"]
|
||||||
|
Loading…
Reference in new issue