General trainer cleanup (#147)

Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Laughing <61612323+Laughing-q@users.noreply.github.com>
This commit is contained in:
Ayush Chaurasia
2023-01-07 19:25:48 +05:30
committed by GitHub
parent f8a13c49a0
commit 0e5a7ae623
8 changed files with 196 additions and 60 deletions

View File

@ -1,7 +1,10 @@
from pathlib import Path
import hydra
import torch
import torchvision
from ultralytics.nn.tasks import ClassificationModel, get_model
from ultralytics.nn.tasks import ClassificationModel, attempt_load_weights
from ultralytics.yolo import v8
from ultralytics.yolo.data import build_classification_dataloader
from ultralytics.yolo.engine.trainer import BaseTrainer
@ -10,29 +13,47 @@ from ultralytics.yolo.utils import DEFAULT_CONFIG
class ClassificationTrainer(BaseTrainer):
def __init__(self, config=DEFAULT_CONFIG, overrides={}):
overrides["task"] = "classify"
super().__init__(config, overrides)
def set_model_attributes(self):
self.model.names = self.data["names"]
def load_model(self, model_cfg=None, weights=None, verbose=True):
# TODO: why treat clf models as unique. We should have clf yamls? YES WE SHOULD!
if isinstance(weights, dict): # yolo ckpt
weights = weights["model"]
if weights and not weights.__class__.__name__.startswith("yolo"): # torchvision
model = weights
else:
model = ClassificationModel(model_cfg, weights, self.data["nc"])
ClassificationModel.reshape_outputs(model, self.data["nc"])
for m in model.modules():
if not weights and hasattr(m, 'reset_parameters'):
m.reset_parameters()
if isinstance(m, torch.nn.Dropout) and self.args.dropout is not None:
m.p = self.args.dropout # set dropout
for p in model.parameters():
p.requires_grad = True # for training
def get_model(self, cfg=None, weights=None):
model = ClassificationModel(cfg, nc=self.data["nc"])
if weights:
model.load(weights)
return model
def load_ckpt(self, ckpt):
return get_model(ckpt)
def setup_model(self):
"""
load/create/download model for any task
"""
# classification models require special handling
if isinstance(self.model, torch.nn.Module): # if model is loaded beforehand. No setup needed
return
model = self.model
pretrained = False
# Load a YOLO model locally, from torchvision, or from Ultralytics assets
if model.endswith(".pt"):
model = model.split(".")[0]
pretrained = True
else:
self.model = self.get_model(cfg=model)
# order: check local file -> torchvision assets -> ultralytics asset
if Path(f"{model}.pt").is_file(): # local file
self.model = attempt_load_weights(f"{model}.pt", device='cpu')
elif model in torchvision.models.__dict__:
self.model = torchvision.models.__dict__[model](weights='IMAGENET1K_V1' if pretrained else None)
else:
self.model = attempt_load_weights(f"{model}.pt", device='cpu')
return # dont return ckpt. Classification doesn't support resume
def get_dataloader(self, dataset_path, batch_size, rank=0, mode="train"):
return build_classification_dataloader(path=dataset_path,