Add retry option to get_github_assets() function (#4148)

This commit is contained in:
Glenn Jocher
2023-08-03 19:13:50 +02:00
committed by GitHub
parent 11d0488bf1
commit 09a0378e81
4 changed files with 41 additions and 33 deletions

View File

@ -410,7 +410,7 @@ All Ultralytics `predict()` calls will return a list of `Results` objects:
| `save_crop()` | `None` | Save cropped predictions to `save_dir/cls/file_name.jpg`. |
| `tojson()` | `None` | Convert the object to JSON format. |
For more details see the `Results` class [documentation](../reference/engine/results.md#-results).
For more details see the `Results` class [documentation](../reference/engine/results.md).
### Boxes
@ -448,7 +448,7 @@ Here is a table for the `Boxes` class methods and properties, including their na
| `xyxyn` | Property (`torch.Tensor`) | Return the boxes in xyxy format normalized by original image size. |
| `xywhn` | Property (`torch.Tensor`) | Return the boxes in xywh format normalized by original image size. |
For more details see the `Boxes` class [documentation](../reference/engine/results.md#boxes).
For more details see the `Boxes` class [documentation](../reference/engine/results.md).
### Masks
@ -472,16 +472,16 @@ For more details see the `Boxes` class [documentation](../reference/engine/resul
Here is a table for the `Masks` class methods and properties, including their name, type, and description:
| Name | Type | Description |
|------------|---------------------------|-----------------------------------------------------------------|
| `cpu()` | Method | Returns the masks tensor on CPU memory. |
| `numpy()` | Method | Returns the masks tensor as a numpy array. |
| `cuda()` | Method | Returns the masks tensor on GPU memory. |
| `to()` | Method | Returns the masks tensor with the specified device and dtype. |
| `xyn` | Property (`torch.Tensor`) | A list of normalized segments represented as tensors. |
| `xy` | Property (`torch.Tensor`) | A list of segments in pixel coordinates represented as tensors. |
| Name | Type | Description |
|-----------|---------------------------|-----------------------------------------------------------------|
| `cpu()` | Method | Returns the masks tensor on CPU memory. |
| `numpy()` | Method | Returns the masks tensor as a numpy array. |
| `cuda()` | Method | Returns the masks tensor on GPU memory. |
| `to()` | Method | Returns the masks tensor with the specified device and dtype. |
| `xyn` | Property (`torch.Tensor`) | A list of normalized segments represented as tensors. |
| `xy` | Property (`torch.Tensor`) | A list of segments in pixel coordinates represented as tensors. |
For more details see the `Masks` class [documentation](../reference/engine/results.md#masks).
For more details see the `Masks` class [documentation](../reference/engine/results.md).
### Keypoints
@ -515,7 +515,7 @@ Here is a table for the `Keypoints` class methods and properties, including thei
| `xy` | Property (`torch.Tensor`) | A list of keypoints in pixel coordinates represented as tensors. |
| `conf` | Property (`torch.Tensor`) | Returns confidence values of keypoints if available, else None. |
For more details see the `Keypoints` class [documentation](../reference/engine/results.md#keypoints).
For more details see the `Keypoints` class [documentation](../reference/engine/results.md).
### Probs
@ -539,22 +539,22 @@ For more details see the `Keypoints` class [documentation](../reference/engine/r
Here's a table summarizing the methods and properties for the `Probs` class:
| Name | Type | Description |
|------------|-------------------------|-------------------------------------------------------------------------|
| `cpu()` | Method | Returns a copy of the probs tensor on CPU memory. |
| `numpy()` | Method | Returns a copy of the probs tensor as a numpy array. |
| `cuda()` | Method | Returns a copy of the probs tensor on GPU memory. |
| `to()` | Method | Returns a copy of the probs tensor with the specified device and dtype. |
| `top1` | Property `int` | Index of the top 1 class. |
| `top5` | Property `list[int]` | Indices of the top 5 classes. |
| `top1conf` | Property `torch.Tensor` | Confidence of the top 1 class. |
| `top5conf` | Property `torch.Tensor` | Confidences of the top 5 classes. |
| Name | Type | Description |
|------------|---------------------------|-------------------------------------------------------------------------|
| `cpu()` | Method | Returns a copy of the probs tensor on CPU memory. |
| `numpy()` | Method | Returns a copy of the probs tensor as a numpy array. |
| `cuda()` | Method | Returns a copy of the probs tensor on GPU memory. |
| `to()` | Method | Returns a copy of the probs tensor with the specified device and dtype. |
| `top1` | Property (`int`) | Index of the top 1 class. |
| `top5` | Property (`list[int]`) | Indices of the top 5 classes. |
| `top1conf` | Property (`torch.Tensor`) | Confidence of the top 1 class. |
| `top5conf` | Property (`torch.Tensor`) | Confidences of the top 5 classes. |
For more details see the `Probs` class [documentation](../reference/engine/results.md#probs).
For more details see the `Probs` class [documentation](../reference/engine/results.md).
## Plotting Results
You can the `plot()` method of a `Result` objects to plot predictions. It plots all prediction types (boxes, masks, keypoints, probabilities, etc.) contained in the `Results` object.
You can use the `plot()` method of a `Result` objects to visualize predictions. It plots all prediction types (boxes, masks, keypoints, probabilities, etc.) contained in the `Results` object onto a numpy array that can then be shown or saved.
!!! example "Plotting"
@ -570,8 +570,10 @@ You can the `plot()` method of a `Result` objects to plot predictions. It plots
# Show the results
for r in results:
im = r.plot() # plot a BGR numpy array of predictions
Image.fromarray(im[..., ::-1]).show() # show RGB image
im_array = r.plot() # plot a BGR numpy array of predictions
im = Image.fromarray(im[..., ::-1]) # RGB PIL image
im.show() # show image
im.save('results.jpg') # save image
```
The `plot()` method has the following arguments available:
@ -636,4 +638,4 @@ Here's a Python script using OpenCV (`cv2`) and YOLOv8 to run inference on video
cv2.destroyAllWindows()
```
This script will run predictions on each frame of the video, visualize the results, and display them in a window. The loop can be exited by pressing 'q'.
This script will run predictions on each frame of the video, visualize the results, and display them in a window. The loop can be exited by pressing 'q'.