|
|
@ -56,6 +56,23 @@ jobs:
|
|
|
|
hub.reset_model(model_id)
|
|
|
|
hub.reset_model(model_id)
|
|
|
|
model = YOLO('https://hub.ultralytics.com/models/' + model_id)
|
|
|
|
model = YOLO('https://hub.ultralytics.com/models/' + model_id)
|
|
|
|
model.train()
|
|
|
|
model.train()
|
|
|
|
|
|
|
|
- name: Test HUB inference API
|
|
|
|
|
|
|
|
shell: python
|
|
|
|
|
|
|
|
env:
|
|
|
|
|
|
|
|
API_KEY: ${{ secrets.ULTRALYTICS_HUB_API_KEY }}
|
|
|
|
|
|
|
|
MODEL_ID: ${{ secrets.ULTRALYTICS_HUB_MODEL_ID }}
|
|
|
|
|
|
|
|
run: |
|
|
|
|
|
|
|
|
import os
|
|
|
|
|
|
|
|
import requests
|
|
|
|
|
|
|
|
import json
|
|
|
|
|
|
|
|
api_key, model_id = os.environ['API_KEY'], os.environ['MODEL_ID']
|
|
|
|
|
|
|
|
url = f"https://api.ultralytics.com/v1/predict/{model_id}"
|
|
|
|
|
|
|
|
headers = {"x-api-key": api_key}
|
|
|
|
|
|
|
|
data = {"size": 320, "confidence": 0.25, "iou": 0.45}
|
|
|
|
|
|
|
|
with open("ultralytics/assets/zidane.jpg", "rb") as f:
|
|
|
|
|
|
|
|
response = requests.post(url, headers=headers, data=data, files={"image": f})
|
|
|
|
|
|
|
|
assert response.status_code == 200, f'Status code {response.status_code}, Reason {response.reason}'
|
|
|
|
|
|
|
|
print(json.dumps(response.json(), indent=2))
|
|
|
|
|
|
|
|
|
|
|
|
Benchmarks:
|
|
|
|
Benchmarks:
|
|
|
|
runs-on: ${{ matrix.os }}
|
|
|
|
runs-on: ${{ matrix.os }}
|
|
|
|