Create Exporter() Class (#117)

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
single_channel
Glenn Jocher 2 years ago committed by GitHub
parent a9dc1637c2
commit 076d73cfaa
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -16,9 +16,10 @@ pip install -e .
### 1. CLI
To simply use the latest Ultralytics YOLO models
```bash
yolo task=detect mode=train model=yolov8n.yaml ...
classify predict yolov8n-cls.yaml
segment val yolov8n-seg.yaml
yolo task=detect mode=train model=yolov8n.yaml args=...
classify predict yolov8n-cls.yaml args=...
segment val yolov8n-seg.yaml args=...
export yolov8n.pt format=onnx
```
### 2. Python SDK
To use pythonic interface of Ultralytics YOLO model

@ -11,6 +11,7 @@ from ultralytics.nn.modules import (C1, C2, C3, C3TR, SPP, SPPF, Bottleneck, Bot
Concat, Conv, ConvTranspose, Detect, DWConv, DWConvTranspose2d, Ensemble, Focus,
GhostBottleneck, GhostConv, Segment)
from ultralytics.yolo.utils import LOGGER, colorstr
from ultralytics.yolo.utils.checks import check_yaml
from ultralytics.yolo.utils.files import yaml_load
from ultralytics.yolo.utils.torch_utils import (fuse_conv_and_bn, initialize_weights, intersect_state_dicts,
make_divisible, model_info, scale_img, time_sync)
@ -80,7 +81,7 @@ class DetectionModel(BaseModel):
# YOLOv5 detection model
def __init__(self, cfg='yolov8n.yaml', ch=3, nc=None, verbose=True): # model, input channels, number of classes
super().__init__()
self.yaml = cfg if isinstance(cfg, dict) else yaml_load(cfg) # cfg dict
self.yaml = cfg if isinstance(cfg, dict) else yaml_load(check_yaml(cfg)) # cfg dict
# Define model
ch = self.yaml['ch'] = self.yaml.get('ch', ch) # input channels

@ -31,7 +31,7 @@ def cli(cfg):
elif task == "classify":
module = yolo.v8.classify
elif task == "export":
func = yolo.trainer.exporter.export_model
func = yolo.engine.exporter.export
else:
raise SyntaxError("task not recognized. Choices are `'detect', 'segment', 'classify'`")
@ -42,7 +42,7 @@ def cli(cfg):
elif mode == "predict":
func = module.predict
elif mode == "export":
func = yolo.trainer.exporter.export_model
func = yolo.engine.exporter.export
else:
raise SyntaxError("mode not recognized. Choices are `'train', 'val', 'predict', 'export'`")
func(cfg)

@ -29,12 +29,12 @@ image_weights: False # use weighted image selection for training
rect: False # support rectangular training
cos_lr: False # use cosine LR scheduler
close_mosaic: 10 # disable mosaic for final 10 epochs
resume: False
# Segmentation
overlap_mask: True # masks overlap
mask_ratio: 4 # mask downsample ratio
# Classification
dropout: False # use dropout
resume: False
# Val/Test settings ----------------------------------------------------------------------------------------------------
@ -65,6 +65,7 @@ agnostic_nms: False # class-agnostic NMS
retina_masks: False
# Export settings ------------------------------------------------------------------------------------------------------
format: torchscript
keras: False # use Keras
optimize: False # TorchScript: optimize for mobile
int8: False # CoreML/TF INT8 quantization

File diff suppressed because it is too large Load Diff

@ -5,7 +5,7 @@ import torch
from ultralytics import yolo # noqa required for python usage
from ultralytics.nn.tasks import ClassificationModel, DetectionModel, SegmentationModel, attempt_load_weights
from ultralytics.yolo.configs import get_config
from ultralytics.yolo.engine.exporter import export_model
from ultralytics.yolo.engine.exporter import Exporter
from ultralytics.yolo.utils import DEFAULT_CONFIG, HELP_MSG, LOGGER
from ultralytics.yolo.utils.checks import check_yaml
from ultralytics.yolo.utils.files import yaml_load
@ -164,7 +164,7 @@ class YOLO:
validator(model=self.model)
@smart_inference_mode()
def export(self, format='', save_dir='', **kwargs):
def export(self, **kwargs):
"""
Export model.
@ -177,36 +177,9 @@ class YOLO:
overrides.update(kwargs)
args = get_config(config=DEFAULT_CONFIG, overrides=overrides)
args.task = self.task
args.format = format
file = self.ckpt or Path(Path(self.cfg).name)
if save_dir:
file = Path(save_dir) / file.name
file.parent.mkdir(parents=True, exist_ok=True)
export_model(
model=self.model,
file=file,
data=args.data, # 'dataset.yaml path'
imgsz=args.imgsz or (640, 640), # image (height, width)
batch_size=1, # batch size
device=args.device, # cuda device, i.e. 0 or 0,1,2,3 or cpu
format=args.format, # include formats
half=args.half or False, # FP16 half-precision export
keras=args.keras or False, # use Keras
optimize=args.optimize or False, # TorchScript: optimize for mobile
int8=args.int8 or False, # CoreML/TF INT8 quantization
dynamic=args.dynamic or False, # ONNX/TF/TensorRT: dynamic axes
opset=args.opset or 17, # ONNX: opset version
verbose=False, # TensorRT: verbose log
workspace=args.workspace or 4, # TensorRT: workspace size (GB)
nms=False, # TF: add NMS to model
agnostic_nms=False, # TF: add agnostic NMS to model
topk_per_class=100, # TF.js NMS: topk per class to keep
topk_all=100, # TF.js NMS: topk for all classes to keep
iou_thres=0.45, # TF.js NMS: IoU threshold
conf_thres=0.25, # TF.js NMS: confidence threshold
)
exporter = Exporter(overrides=overrides)
exporter(model=self.model)
def train(self, **kwargs):
"""

@ -16,14 +16,14 @@ Usage - formats:
$ yolo task=... mode=predict --weights yolov8n.pt # PyTorch
yolov8n.torchscript # TorchScript
yolov8n.onnx # ONNX Runtime or OpenCV DNN with --dnn
yolov5s_openvino_model # OpenVINO
yolov8n_openvino_model # OpenVINO
yolov8n.engine # TensorRT
yolov8n.mlmodel # CoreML (macOS-only)
yolov5s_saved_model # TensorFlow SavedModel
yolov8n_saved_model # TensorFlow SavedModel
yolov8n.pb # TensorFlow GraphDef
yolov8n.tflite # TensorFlow Lite
yolov5s_edgetpu.tflite # TensorFlow Edge TPU
yolov5s_paddle_model # PaddlePaddle
yolov8n_edgetpu.tflite # TensorFlow Edge TPU
yolov8n_paddle_model # PaddlePaddle
"""
import platform
from pathlib import Path

@ -25,14 +25,12 @@ TQDM_BAR_FORMAT = '{l_bar}{bar:10}{r_bar}' # tqdm bar format
LOGGING_NAME = 'yolov5'
HELP_MSG = \
"""
Please refer to below Usage examples for help running YOLOv8
For help visit Ultralytics Community at https://community.ultralytics.com/
Submit bug reports to https//github.com/ultralytics/ultralytics
Please refer to below Usage examples for help running YOLOv8:
Install:
pip install ultralytics
Python usage:
Python SDK:
from ultralytics import YOLO
model = YOLO.new('yolov8n.yaml') # create a new model from scratch
@ -42,12 +40,15 @@ HELP_MSG = \
results = model.predict(source='bus.jpg')
success = model.export(format='onnx')
CLI usage:
yolo task=detect mode=train model=yolov8n.yaml ...
classify predict yolov8n-cls.yaml
segment val yolov8n-seg.yaml
CLI:
yolo task=detect mode=train model=yolov8n.yaml args...
classify predict yolov8n-cls.yaml args...
segment val yolov8n-seg.yaml args...
export yolov8n.pt format=onnx args...
For all arguments see https://github.com/ultralytics/ultralytics/blob/main/ultralytics/yolo/utils/configs/default.yaml
Docs: https://docs.ultralytics.com
Community: https://community.ultralytics.com
GitHub: https://github.com/ultralytics/ultralytics
"""
# Settings
@ -56,7 +57,6 @@ HELP_MSG = \
pd.options.display.max_columns = 10
cv2.setNumThreads(0) # prevent OpenCV from multithreading (incompatible with PyTorch DataLoader)
os.environ['NUMEXPR_MAX_THREADS'] = str(NUM_THREADS) # NumExpr max threads
os.environ['OMP_NUM_THREADS'] = '1' if platform.system() == 'darwin' else str(NUM_THREADS) # OpenMP (PyTorch and SciPy)
def is_colab():

@ -36,8 +36,8 @@ def on_val_end(trainer):
if trainer.epoch == 0:
model_info = {
"Parameters": get_num_params(trainer.model),
"GFLOPs": round(get_flops(trainer.model), 1),
"Inference speed (ms/img)": round(trainer.validator.speed[1], 1)}
"GFLOPs": round(get_flops(trainer.model), 3),
"Inference speed (ms/img)": round(trainer.validator.speed[1], 3)}
Task.current_task().connect(model_info, name='Model')

@ -19,8 +19,8 @@ def on_val_end(trainer):
if trainer.epoch == 0:
model_info = {
"model/parameters": get_num_params(trainer.model),
"model/GFLOPs": round(get_flops(trainer.model), 1),
"model/speed(ms)": round(trainer.validator.speed[1], 1)}
"model/GFLOPs": round(get_flops(trainer.model), 3),
"model/speed(ms)": round(trainer.validator.speed[1], 3)}
wandb.run.log(model_info, step=trainer.epoch + 1)

Loading…
Cancel
Save