|
|
|
@ -2,51 +2,51 @@
|
|
|
|
|
"""
|
|
|
|
|
Export a YOLOv5 PyTorch model to other formats. TensorFlow exports authored by https://github.com/zldrobit
|
|
|
|
|
|
|
|
|
|
Format | `export.py --include` | Model
|
|
|
|
|
Format | `format=argument` | Model
|
|
|
|
|
--- | --- | ---
|
|
|
|
|
PyTorch | - | yolov8n.pt
|
|
|
|
|
TorchScript | `torchscript` | yolov8n.torchscript
|
|
|
|
|
ONNX | `onnx` | yolov8n.onnx
|
|
|
|
|
OpenVINO | `openvino` | yolov5s_openvino_model/
|
|
|
|
|
OpenVINO | `openvino` | yolov8n_openvino_model/
|
|
|
|
|
TensorRT | `engine` | yolov8n.engine
|
|
|
|
|
CoreML | `coreml` | yolov8n.mlmodel
|
|
|
|
|
TensorFlow SavedModel | `saved_model` | yolov5s_saved_model/
|
|
|
|
|
TensorFlow SavedModel | `saved_model` | yolov8n_saved_model/
|
|
|
|
|
TensorFlow GraphDef | `pb` | yolov8n.pb
|
|
|
|
|
TensorFlow Lite | `tflite` | yolov8n.tflite
|
|
|
|
|
TensorFlow Edge TPU | `edgetpu` | yolov5s_edgetpu.tflite
|
|
|
|
|
TensorFlow.js | `tfjs` | yolov5s_web_model/
|
|
|
|
|
PaddlePaddle | `paddle` | yolov5s_paddle_model/
|
|
|
|
|
TensorFlow Edge TPU | `edgetpu` | yolov8n_edgetpu.tflite
|
|
|
|
|
TensorFlow.js | `tfjs` | yolov8n_web_model/
|
|
|
|
|
PaddlePaddle | `paddle` | yolov8n_paddle_model/
|
|
|
|
|
|
|
|
|
|
Requirements:
|
|
|
|
|
$ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime openvino-dev tensorflow-cpu # CPU
|
|
|
|
|
$ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime-gpu openvino-dev tensorflow # GPU
|
|
|
|
|
|
|
|
|
|
Usage:
|
|
|
|
|
$ python export.py --weights yolov8n.pt --include torchscript onnx openvino engine coreml tflite ...
|
|
|
|
|
Python:
|
|
|
|
|
from ultralytics import YOLO
|
|
|
|
|
model = YOLO.new('yolov8n.yaml')
|
|
|
|
|
results = model.export(format='onnx')
|
|
|
|
|
|
|
|
|
|
CLI:
|
|
|
|
|
$ yolo mode=export model=yolov8n.pt format=onnx
|
|
|
|
|
|
|
|
|
|
Inference:
|
|
|
|
|
$ python detect.py --weights yolov8n.pt # PyTorch
|
|
|
|
|
yolov8n.torchscript # TorchScript
|
|
|
|
|
yolov8n.onnx # ONNX Runtime or OpenCV DNN with --dnn
|
|
|
|
|
yolov5s_openvino_model # OpenVINO
|
|
|
|
|
yolov8n_openvino_model # OpenVINO
|
|
|
|
|
yolov8n.engine # TensorRT
|
|
|
|
|
yolov8n.mlmodel # CoreML (macOS-only)
|
|
|
|
|
yolov5s_saved_model # TensorFlow SavedModel
|
|
|
|
|
yolov8n_saved_model # TensorFlow SavedModel
|
|
|
|
|
yolov8n.pb # TensorFlow GraphDef
|
|
|
|
|
yolov8n.tflite # TensorFlow Lite
|
|
|
|
|
yolov5s_edgetpu.tflite # TensorFlow Edge TPU
|
|
|
|
|
yolov5s_paddle_model # PaddlePaddle
|
|
|
|
|
yolov8n_edgetpu.tflite # TensorFlow Edge TPU
|
|
|
|
|
yolov8n_paddle_model # PaddlePaddle
|
|
|
|
|
|
|
|
|
|
TensorFlow.js:
|
|
|
|
|
$ cd .. && git clone https://github.com/zldrobit/tfjs-yolov5-example.git && cd tfjs-yolov5-example
|
|
|
|
|
$ npm install
|
|
|
|
|
$ ln -s ../../yolov5/yolov5s_web_model public/yolov5s_web_model
|
|
|
|
|
$ ln -s ../../yolov5/yolov8n_web_model public/yolov8n_web_model
|
|
|
|
|
$ npm start
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from ultralytics import YOLO
|
|
|
|
|
model = YOLO().new('yolov8n.yaml')
|
|
|
|
|
results = model.export(format='onnx')
|
|
|
|
|
"""
|
|
|
|
|
import contextlib
|
|
|
|
|
import json
|
|
|
|
@ -59,15 +59,19 @@ import warnings
|
|
|
|
|
from copy import deepcopy
|
|
|
|
|
from pathlib import Path
|
|
|
|
|
|
|
|
|
|
import hydra
|
|
|
|
|
import numpy as np
|
|
|
|
|
import pandas as pd
|
|
|
|
|
import torch
|
|
|
|
|
from torch.utils.mobile_optimizer import optimize_for_mobile
|
|
|
|
|
|
|
|
|
|
from ultralytics.nn.modules import Detect, Segment
|
|
|
|
|
from ultralytics.nn.tasks import ClassificationModel, DetectionModel, SegmentationModel
|
|
|
|
|
from ultralytics.yolo.utils import LOGGER, ROOT, colorstr, get_default_args
|
|
|
|
|
from ultralytics.yolo.utils.checks import check_imgsz, check_requirements, check_version
|
|
|
|
|
from ultralytics.yolo.utils.files import file_size, yaml_save
|
|
|
|
|
from ultralytics.nn.tasks import ClassificationModel, DetectionModel, SegmentationModel, attempt_load_weights
|
|
|
|
|
from ultralytics.yolo.configs import get_config
|
|
|
|
|
from ultralytics.yolo.data.dataloaders.stream_loaders import LoadImages
|
|
|
|
|
from ultralytics.yolo.data.utils import check_dataset
|
|
|
|
|
from ultralytics.yolo.utils import DEFAULT_CONFIG, LOGGER, colorstr, get_default_args
|
|
|
|
|
from ultralytics.yolo.utils.checks import check_imgsz, check_requirements, check_version, check_yaml
|
|
|
|
|
from ultralytics.yolo.utils.files import file_size, increment_path, yaml_save
|
|
|
|
|
from ultralytics.yolo.utils.ops import Profile
|
|
|
|
|
from ultralytics.yolo.utils.torch_utils import select_device, smart_inference_mode
|
|
|
|
|
|
|
|
|
@ -110,46 +114,166 @@ def try_export(inner_func):
|
|
|
|
|
return outer_func
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@try_export
|
|
|
|
|
def export_torchscript(model, im, file, optimize, prefix=colorstr('TorchScript:')):
|
|
|
|
|
class Exporter:
|
|
|
|
|
|
|
|
|
|
def __init__(self, config=DEFAULT_CONFIG, overrides={}):
|
|
|
|
|
self.args = get_config(config, overrides)
|
|
|
|
|
project = self.args.project or f"runs/{self.args.task}"
|
|
|
|
|
name = self.args.name or f"{self.args.mode}"
|
|
|
|
|
self.save_dir = increment_path(Path(project) / name, exist_ok=self.args.exist_ok)
|
|
|
|
|
self.save_dir.mkdir(parents=True, exist_ok=True)
|
|
|
|
|
self.imgsz = self.args.imgsz
|
|
|
|
|
|
|
|
|
|
@smart_inference_mode()
|
|
|
|
|
def __call__(self, model=None):
|
|
|
|
|
t = time.time()
|
|
|
|
|
format = self.args.format.lower() # to lowercase
|
|
|
|
|
fmts = tuple(export_formats()['Argument'][1:]) # available export formats
|
|
|
|
|
flags = [x == format for x in fmts]
|
|
|
|
|
assert sum(flags), f'ERROR: Invalid format={format}, valid formats are {fmts}'
|
|
|
|
|
jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle = flags # export booleans
|
|
|
|
|
|
|
|
|
|
# Load PyTorch model
|
|
|
|
|
self.device = select_device(self.args.device)
|
|
|
|
|
if self.args.half:
|
|
|
|
|
assert self.device.type != 'cpu' or coreml, '--half only compatible with GPU export, i.e. use --device 0'
|
|
|
|
|
assert not self.args.dynamic, '--half not compatible with --dynamic, i.e. use either --half or --dynamic'
|
|
|
|
|
|
|
|
|
|
# Checks
|
|
|
|
|
if isinstance(self.imgsz, int):
|
|
|
|
|
self.imgsz = [self.imgsz]
|
|
|
|
|
self.imgsz *= 2 if len(self.imgsz) == 1 else 1 # expand
|
|
|
|
|
if self.args.optimize:
|
|
|
|
|
assert self.device.type == 'cpu', '--optimize not compatible with cuda devices, i.e. use --device cpu'
|
|
|
|
|
|
|
|
|
|
# Input
|
|
|
|
|
self.args.batch_size = 1 # TODO: resolve this issue, default 16 not fit for export
|
|
|
|
|
gs = int(max(model.stride)) # grid size (max stride)
|
|
|
|
|
imgsz = [check_imgsz(x, gs) for x in self.imgsz] # verify img_size are gs-multiples
|
|
|
|
|
im = torch.zeros(self.args.batch_size, 3, *imgsz).to(self.device) # image size(1,3,320,192) BCHW iDetection
|
|
|
|
|
file = Path(Path(model.yaml['yaml_file']).name)
|
|
|
|
|
|
|
|
|
|
# Update model
|
|
|
|
|
model = deepcopy(model)
|
|
|
|
|
for p in model.parameters():
|
|
|
|
|
p.requires_grad = False
|
|
|
|
|
model.eval()
|
|
|
|
|
model = model.fuse()
|
|
|
|
|
for k, m in model.named_modules():
|
|
|
|
|
if isinstance(m, (Detect, Segment)):
|
|
|
|
|
m.dynamic = self.args.dynamic
|
|
|
|
|
m.export = True
|
|
|
|
|
|
|
|
|
|
y = None
|
|
|
|
|
for _ in range(2):
|
|
|
|
|
y = model(im) # dry runs
|
|
|
|
|
if self.args.half and not coreml:
|
|
|
|
|
im, model = im.half(), model.half() # to FP16
|
|
|
|
|
shape = tuple((y[0] if isinstance(y, tuple) else y).shape) # model output shape
|
|
|
|
|
LOGGER.info(
|
|
|
|
|
f"\n{colorstr('PyTorch:')} starting from {file} with output shape {shape} ({file_size(file):.1f} MB)")
|
|
|
|
|
|
|
|
|
|
# Warnings
|
|
|
|
|
warnings.filterwarnings('ignore', category=torch.jit.TracerWarning) # suppress TracerWarning
|
|
|
|
|
warnings.filterwarnings('ignore', category=UserWarning) # suppress shape prim::Constant missing ONNX warning
|
|
|
|
|
warnings.filterwarnings('ignore', category=DeprecationWarning) # suppress CoreML np.bool deprecation warning
|
|
|
|
|
|
|
|
|
|
# Assign
|
|
|
|
|
self.im = im
|
|
|
|
|
self.model = model
|
|
|
|
|
self.file = file
|
|
|
|
|
self.metadata = {'stride': int(max(model.stride)), 'names': model.names} # model metadata
|
|
|
|
|
|
|
|
|
|
# Exports
|
|
|
|
|
f = [''] * len(fmts) # exported filenames
|
|
|
|
|
if jit: # TorchScript
|
|
|
|
|
f[0], _ = self._export_torchscript()
|
|
|
|
|
if engine: # TensorRT required before ONNX
|
|
|
|
|
f[1], _ = self._export_engine()
|
|
|
|
|
if onnx or xml: # OpenVINO requires ONNX
|
|
|
|
|
f[2], _ = self._export_onnx()
|
|
|
|
|
if xml: # OpenVINO
|
|
|
|
|
f[3], _ = self._export_openvino()
|
|
|
|
|
if coreml: # CoreML
|
|
|
|
|
f[4], _ = self._export_coreml()
|
|
|
|
|
if any((saved_model, pb, tflite, edgetpu, tfjs)): # TensorFlow formats
|
|
|
|
|
assert not isinstance(model, ClassificationModel), 'ClassificationModel TF exports not yet supported.'
|
|
|
|
|
nms = False
|
|
|
|
|
f[5], s_model = self._export_saved_model(nms=nms or self.args.agnostic_nms or tfjs,
|
|
|
|
|
agnostic_nms=self.args.agnostic_nms or tfjs)
|
|
|
|
|
if pb or tfjs: # pb prerequisite to tfjs
|
|
|
|
|
f[6], _ = self._export_pb(s_model,)
|
|
|
|
|
if tflite or edgetpu:
|
|
|
|
|
f[7], _ = self._export_tflite(s_model,
|
|
|
|
|
int8=self.args.int8 or edgetpu,
|
|
|
|
|
data=self.args.data,
|
|
|
|
|
nms=nms,
|
|
|
|
|
agnostic_nms=self.args.agnostic_nms)
|
|
|
|
|
if edgetpu:
|
|
|
|
|
f[8], _ = self._export_edgetpu()
|
|
|
|
|
self._add_tflite_metadata(f[8] or f[7], num_outputs=len(s_model.outputs))
|
|
|
|
|
if tfjs:
|
|
|
|
|
f[9], _ = self._export_tfjs()
|
|
|
|
|
if paddle: # PaddlePaddle
|
|
|
|
|
f[10], _ = self._export_paddle()
|
|
|
|
|
|
|
|
|
|
# Finish
|
|
|
|
|
f = [str(x) for x in f if x] # filter out '' and None
|
|
|
|
|
if any(f):
|
|
|
|
|
cls, det, seg = (isinstance(model, x)
|
|
|
|
|
for x in (ClassificationModel, DetectionModel, SegmentationModel)) # type
|
|
|
|
|
det &= not seg # segmentation models inherit from SegmentationModel(DetectionModel)
|
|
|
|
|
s = "-WARNING ⚠️ not yet supported for YOLOv8 exported models"
|
|
|
|
|
task = 'detect' if det else 'segment' if seg else 'classify' if cls else ''
|
|
|
|
|
LOGGER.info(f'\nExport complete ({time.time() - t:.1f}s)'
|
|
|
|
|
f"\nResults saved to {colorstr('bold', file.parent.resolve())}"
|
|
|
|
|
f"\nPredict: yolo task={task} mode=predict model={f[-1]} {s}"
|
|
|
|
|
f"\nValidate: yolo task={task} mode=val model={f[-1]} {s}"
|
|
|
|
|
f"\nVisualize: https://netron.app")
|
|
|
|
|
return f # return list of exported files/dirs
|
|
|
|
|
|
|
|
|
|
@try_export
|
|
|
|
|
def _export_torchscript(self, prefix=colorstr('TorchScript:')):
|
|
|
|
|
# YOLOv5 TorchScript model export
|
|
|
|
|
LOGGER.info(f'\n{prefix} starting export with torch {torch.__version__}...')
|
|
|
|
|
f = file.with_suffix('.torchscript')
|
|
|
|
|
f = self.file.with_suffix('.torchscript')
|
|
|
|
|
|
|
|
|
|
ts = torch.jit.trace(model, im, strict=False)
|
|
|
|
|
d = {"shape": im.shape, "stride": int(max(model.stride)), "names": model.names}
|
|
|
|
|
ts = torch.jit.trace(self.model, self.im, strict=False)
|
|
|
|
|
d = {"shape": self.im.shape, "stride": int(max(self.model.stride)), "names": self.model.names}
|
|
|
|
|
extra_files = {'config.txt': json.dumps(d)} # torch._C.ExtraFilesMap()
|
|
|
|
|
if optimize: # https://pytorch.org/tutorials/recipes/mobile_interpreter.html
|
|
|
|
|
if self.args.optimize: # https://pytorch.org/tutorials/recipes/mobile_interpreter.html
|
|
|
|
|
LOGGER.info(f'{prefix} optimizing for mobile...')
|
|
|
|
|
from torch.utils.mobile_optimizer import optimize_for_mobile
|
|
|
|
|
optimize_for_mobile(ts)._save_for_lite_interpreter(str(f), _extra_files=extra_files)
|
|
|
|
|
else:
|
|
|
|
|
ts.save(str(f), _extra_files=extra_files)
|
|
|
|
|
return f, None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@try_export
|
|
|
|
|
def export_onnx(model, im, file, opset, dynamic, simplify, prefix=colorstr('ONNX:')):
|
|
|
|
|
@try_export
|
|
|
|
|
def _export_onnx(self, prefix=colorstr('ONNX:')):
|
|
|
|
|
# YOLOv5 ONNX export
|
|
|
|
|
check_requirements('onnx>=1.12.0')
|
|
|
|
|
import onnx # noqa
|
|
|
|
|
|
|
|
|
|
LOGGER.info(f'\n{prefix} starting export with onnx {onnx.__version__}...')
|
|
|
|
|
f = file.with_suffix('.onnx')
|
|
|
|
|
f = str(self.file.with_suffix('.onnx'))
|
|
|
|
|
|
|
|
|
|
output_names = ['output0', 'output1'] if isinstance(model, SegmentationModel) else ['output0']
|
|
|
|
|
output_names = ['output0', 'output1'] if isinstance(self.model, SegmentationModel) else ['output0']
|
|
|
|
|
dynamic = self.args.dynamic
|
|
|
|
|
if dynamic:
|
|
|
|
|
dynamic = {'images': {0: 'batch', 2: 'height', 3: 'width'}} # shape(1,3,640,640)
|
|
|
|
|
if isinstance(model, SegmentationModel):
|
|
|
|
|
if isinstance(self.model, SegmentationModel):
|
|
|
|
|
dynamic['output0'] = {0: 'batch', 1: 'anchors'} # shape(1,25200,85)
|
|
|
|
|
dynamic['output1'] = {0: 'batch', 2: 'mask_height', 3: 'mask_width'} # shape(1,32,160,160)
|
|
|
|
|
elif isinstance(model, DetectionModel):
|
|
|
|
|
elif isinstance(self.model, DetectionModel):
|
|
|
|
|
dynamic['output0'] = {0: 'batch', 1: 'anchors'} # shape(1,25200,85)
|
|
|
|
|
|
|
|
|
|
torch.onnx.export(
|
|
|
|
|
model.cpu() if dynamic else model, # --dynamic only compatible with cpu
|
|
|
|
|
im.cpu() if dynamic else im,
|
|
|
|
|
self.model.cpu() if dynamic else self.model, # --dynamic only compatible with cpu
|
|
|
|
|
self.im.cpu() if dynamic else self.im,
|
|
|
|
|
f,
|
|
|
|
|
verbose=False,
|
|
|
|
|
opset_version=opset,
|
|
|
|
|
opset_version=self.args.opset,
|
|
|
|
|
do_constant_folding=True, # WARNING: DNN inference with torch>=1.12 may require do_constant_folding=False
|
|
|
|
|
input_names=['images'],
|
|
|
|
|
output_names=output_names,
|
|
|
|
@ -160,18 +284,18 @@ def export_onnx(model, im, file, opset, dynamic, simplify, prefix=colorstr('ONNX
|
|
|
|
|
onnx.checker.check_model(model_onnx) # check onnx model
|
|
|
|
|
|
|
|
|
|
# Metadata
|
|
|
|
|
d = {'stride': int(max(model.stride)), 'names': model.names}
|
|
|
|
|
d = {'stride': int(max(self.model.stride)), 'names': self.model.names}
|
|
|
|
|
for k, v in d.items():
|
|
|
|
|
meta = model_onnx.metadata_props.add()
|
|
|
|
|
meta.key, meta.value = k, str(v)
|
|
|
|
|
onnx.save(model_onnx, f)
|
|
|
|
|
|
|
|
|
|
# Simplify
|
|
|
|
|
if simplify:
|
|
|
|
|
if self.args.simplify:
|
|
|
|
|
try:
|
|
|
|
|
cuda = torch.cuda.is_available()
|
|
|
|
|
check_requirements(('onnxruntime-gpu' if cuda else 'onnxruntime', 'onnx-simplifier>=0.4.1'))
|
|
|
|
|
import onnxsim
|
|
|
|
|
import onnxsim # noqa
|
|
|
|
|
|
|
|
|
|
LOGGER.info(f'{prefix} simplifying with onnx-simplifier {onnxsim.__version__}...')
|
|
|
|
|
model_onnx, check = onnxsim.simplify(model_onnx)
|
|
|
|
@ -181,82 +305,73 @@ def export_onnx(model, im, file, opset, dynamic, simplify, prefix=colorstr('ONNX
|
|
|
|
|
LOGGER.info(f'{prefix} simplifier failure: {e}')
|
|
|
|
|
return f, model_onnx
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@try_export
|
|
|
|
|
def export_openvino(file, metadata, half, prefix=colorstr('OpenVINO:')):
|
|
|
|
|
@try_export
|
|
|
|
|
def _export_openvino(self, prefix=colorstr('OpenVINO:')):
|
|
|
|
|
# YOLOv5 OpenVINO export
|
|
|
|
|
check_requirements('openvino-dev') # requires openvino-dev: https://pypi.org/project/openvino-dev/
|
|
|
|
|
import openvino.inference_engine as ie # noqa
|
|
|
|
|
|
|
|
|
|
LOGGER.info(f'\n{prefix} starting export with openvino {ie.__version__}...')
|
|
|
|
|
f = str(file).replace('.pt', f'_openvino_model{os.sep}')
|
|
|
|
|
f = str(self.file).replace(self.file.suffix, f'_openvino_model{os.sep}')
|
|
|
|
|
f_onnx = self.file.with_suffix('.onnx')
|
|
|
|
|
|
|
|
|
|
cmd = f"mo --input_model {file.with_suffix('.onnx')} --output_dir {f} --data_type {'FP16' if half else 'FP32'}"
|
|
|
|
|
cmd = f"mo --input_model {f_onnx} --output_dir {f} --data_type {'FP16' if self.args.half else 'FP32'}"
|
|
|
|
|
subprocess.run(cmd.split(), check=True, env=os.environ) # export
|
|
|
|
|
yaml_save(Path(f) / file.with_suffix('.yaml').name, metadata) # add metadata.yaml
|
|
|
|
|
yaml_save(Path(f) / self.file.with_suffix('.yaml').name, self.metadata) # add metadata.yaml
|
|
|
|
|
return f, None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@try_export
|
|
|
|
|
def export_paddle(model, im, file, metadata, prefix=colorstr('PaddlePaddle:')):
|
|
|
|
|
@try_export
|
|
|
|
|
def _export_paddle(self, prefix=colorstr('PaddlePaddle:')):
|
|
|
|
|
# YOLOv5 Paddle export
|
|
|
|
|
check_requirements(('paddlepaddle', 'x2paddle'))
|
|
|
|
|
import x2paddle # noqa
|
|
|
|
|
from x2paddle.convert import pytorch2paddle # noqa
|
|
|
|
|
|
|
|
|
|
LOGGER.info(f'\n{prefix} starting export with X2Paddle {x2paddle.__version__}...')
|
|
|
|
|
f = str(file).replace('.pt', f'_paddle_model{os.sep}')
|
|
|
|
|
f = str(self.file).replace(self.file.suffix, f'_paddle_model{os.sep}')
|
|
|
|
|
|
|
|
|
|
pytorch2paddle(module=model, save_dir=f, jit_type='trace', input_examples=[im]) # export
|
|
|
|
|
yaml_save(Path(f) / file.with_suffix('.yaml').name, metadata) # add metadata.yaml
|
|
|
|
|
pytorch2paddle(module=self.model, save_dir=f, jit_type='trace', input_examples=[self.im]) # export
|
|
|
|
|
yaml_save(Path(f) / self.file.with_suffix('.yaml').name, self.metadata) # add metadata.yaml
|
|
|
|
|
return f, None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@try_export
|
|
|
|
|
def export_coreml(model, im, file, int8, half, prefix=colorstr('CoreML:')):
|
|
|
|
|
@try_export
|
|
|
|
|
def _export_coreml(self, prefix=colorstr('CoreML:')):
|
|
|
|
|
# YOLOv5 CoreML export
|
|
|
|
|
check_requirements('coremltools')
|
|
|
|
|
import coremltools as ct # noqa
|
|
|
|
|
|
|
|
|
|
LOGGER.info(f'\n{prefix} starting export with coremltools {ct.__version__}...')
|
|
|
|
|
f = file.with_suffix('.mlmodel')
|
|
|
|
|
f = self.file.with_suffix('.mlmodel')
|
|
|
|
|
|
|
|
|
|
ts = torch.jit.trace(model, im, strict=False) # TorchScript model
|
|
|
|
|
ct_model = ct.convert(ts, inputs=[ct.ImageType('image', shape=im.shape, scale=1 / 255, bias=[0, 0, 0])])
|
|
|
|
|
bits, mode = (8, 'kmeans_lut') if int8 else (16, 'linear') if half else (32, None)
|
|
|
|
|
ts = torch.jit.trace(self.model, self.im, strict=False) # TorchScript model
|
|
|
|
|
ct_model = ct.convert(ts, inputs=[ct.ImageType('image', shape=self.im.shape, scale=1 / 255, bias=[0, 0, 0])])
|
|
|
|
|
bits, mode = (8, 'kmeans_lut') if self.args.int8 else (16, 'linear') if self.args.half else (32, None)
|
|
|
|
|
if bits < 32:
|
|
|
|
|
if MACOS: # quantization only supported on macOS
|
|
|
|
|
ct_model = ct.models.neural_network.quantization_utils.quantize_weights(ct_model, bits, mode)
|
|
|
|
|
else:
|
|
|
|
|
LOGGER.info(f'{prefix} quantization only supported on macOS, skipping...')
|
|
|
|
|
ct_model.save(f)
|
|
|
|
|
ct_model.save(str(f))
|
|
|
|
|
return f, ct_model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@try_export
|
|
|
|
|
def export_engine(model, im, file, half, dynamic, simplify, workspace=4, verbose=False, prefix=colorstr('TensorRT:')):
|
|
|
|
|
@try_export
|
|
|
|
|
def _export_engine(self, workspace=4, verbose=False, prefix=colorstr('TensorRT:')):
|
|
|
|
|
# YOLOv5 TensorRT export https://developer.nvidia.com/tensorrt
|
|
|
|
|
assert im.device.type != 'cpu', 'export running on CPU but must be on GPU, i.e. `python export.py --device 0`'
|
|
|
|
|
assert self.im.device.type != 'cpu', 'export running on CPU but must be on GPU, i.e. `device==0`'
|
|
|
|
|
try:
|
|
|
|
|
import tensorrt as trt
|
|
|
|
|
except Exception:
|
|
|
|
|
import tensorrt as trt # noqa
|
|
|
|
|
except ImportError:
|
|
|
|
|
if platform.system() == 'Linux':
|
|
|
|
|
check_requirements('nvidia-tensorrt', cmds='-U --index-url https://pypi.ngc.nvidia.com')
|
|
|
|
|
import tensorrt as trt
|
|
|
|
|
|
|
|
|
|
if trt.__version__[0] == '7': # TensorRT 7 handling https://github.com/ultralytics/yolov5/issues/6012
|
|
|
|
|
grid = model.model[-1].anchor_grid
|
|
|
|
|
model.model[-1].anchor_grid = [a[..., :1, :1, :] for a in grid]
|
|
|
|
|
export_onnx(model, im, file, 12, dynamic, simplify) # opset 12
|
|
|
|
|
model.model[-1].anchor_grid = grid
|
|
|
|
|
else: # TensorRT >= 8
|
|
|
|
|
check_version(trt.__version__, '8.0.0', hard=True) # require tensorrt>=8.0.0
|
|
|
|
|
export_onnx(model, im, file, 12, dynamic, simplify) # opset 12
|
|
|
|
|
onnx = file.with_suffix('.onnx')
|
|
|
|
|
import tensorrt as trt # noqa
|
|
|
|
|
|
|
|
|
|
check_version(trt.__version__, '7.0.0', hard=True) # require tensorrt>=8.0.0
|
|
|
|
|
self._export_onnx()
|
|
|
|
|
onnx = self.file.with_suffix('.onnx')
|
|
|
|
|
|
|
|
|
|
LOGGER.info(f'\n{prefix} starting export with TensorRT {trt.__version__}...')
|
|
|
|
|
assert onnx.exists(), f'failed to export ONNX file: {onnx}'
|
|
|
|
|
f = file.with_suffix('.engine') # TensorRT engine file
|
|
|
|
|
f = self.file.with_suffix('.engine') # TensorRT engine file
|
|
|
|
|
logger = trt.Logger(trt.Logger.INFO)
|
|
|
|
|
if verbose:
|
|
|
|
|
logger.min_severity = trt.Logger.Severity.VERBOSE
|
|
|
|
@ -279,57 +394,55 @@ def export_engine(model, im, file, half, dynamic, simplify, workspace=4, verbose
|
|
|
|
|
for out in outputs:
|
|
|
|
|
LOGGER.info(f'{prefix} output "{out.name}" with shape{out.shape} {out.dtype}')
|
|
|
|
|
|
|
|
|
|
if dynamic:
|
|
|
|
|
if im.shape[0] <= 1:
|
|
|
|
|
if self.args.dynamic:
|
|
|
|
|
shape = self.im.shape
|
|
|
|
|
if shape[0] <= 1:
|
|
|
|
|
LOGGER.warning(f"{prefix} WARNING ⚠️ --dynamic model requires maximum --batch-size argument")
|
|
|
|
|
profile = builder.create_optimization_profile()
|
|
|
|
|
for inp in inputs:
|
|
|
|
|
profile.set_shape(inp.name, (1, *im.shape[1:]), (max(1, im.shape[0] // 2), *im.shape[1:]), im.shape)
|
|
|
|
|
profile.set_shape(inp.name, (1, *shape[1:]), (max(1, shape[0] // 2), *shape[1:]), shape)
|
|
|
|
|
config.add_optimization_profile(profile)
|
|
|
|
|
|
|
|
|
|
LOGGER.info(f'{prefix} building FP{16 if builder.platform_has_fast_fp16 and half else 32} engine as {f}')
|
|
|
|
|
if builder.platform_has_fast_fp16 and half:
|
|
|
|
|
LOGGER.info(
|
|
|
|
|
f'{prefix} building FP{16 if builder.platform_has_fast_fp16 and self.args.half else 32} engine as {f}')
|
|
|
|
|
if builder.platform_has_fast_fp16 and self.args.half:
|
|
|
|
|
config.set_flag(trt.BuilderFlag.FP16)
|
|
|
|
|
with builder.build_engine(network, config) as engine, open(f, 'wb') as t:
|
|
|
|
|
t.write(engine.serialize())
|
|
|
|
|
return f, None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@try_export
|
|
|
|
|
def export_saved_model(model,
|
|
|
|
|
im,
|
|
|
|
|
file,
|
|
|
|
|
dynamic,
|
|
|
|
|
tf_nms=False,
|
|
|
|
|
@try_export
|
|
|
|
|
def _export_saved_model(self,
|
|
|
|
|
nms=False,
|
|
|
|
|
agnostic_nms=False,
|
|
|
|
|
topk_per_class=100,
|
|
|
|
|
topk_all=100,
|
|
|
|
|
iou_thres=0.45,
|
|
|
|
|
conf_thres=0.25,
|
|
|
|
|
keras=False,
|
|
|
|
|
prefix=colorstr('TensorFlow SavedModel:')):
|
|
|
|
|
# YOLOv5 TensorFlow SavedModel export
|
|
|
|
|
try:
|
|
|
|
|
import tensorflow as tf
|
|
|
|
|
except Exception:
|
|
|
|
|
import tensorflow as tf # noqa
|
|
|
|
|
except ImportError:
|
|
|
|
|
check_requirements(f"tensorflow{'' if torch.cuda.is_available() else '-macos' if MACOS else '-cpu'}")
|
|
|
|
|
import tensorflow as tf
|
|
|
|
|
from models.tf import TFModel
|
|
|
|
|
import tensorflow as tf # noqa
|
|
|
|
|
# from models.tf import TFModel
|
|
|
|
|
from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2 # noqa
|
|
|
|
|
|
|
|
|
|
LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...')
|
|
|
|
|
f = str(file).replace('.pt', '_saved_model')
|
|
|
|
|
batch_size, ch, *imgsz = list(im.shape) # BCHW
|
|
|
|
|
f = str(self.file).replace(self.file.suffix, '_saved_model')
|
|
|
|
|
batch_size, ch, *imgsz = list(self.im.shape) # BCHW
|
|
|
|
|
|
|
|
|
|
tf_model = TFModel(cfg=model.yaml, model=model, nc=model.nc, imgsz=imgsz)
|
|
|
|
|
tf_models = None # TODO: no TF modules available
|
|
|
|
|
tf_model = tf_models.TFModel(cfg=self.model.yaml, model=self.model.cpu(), nc=self.model.nc, imgsz=imgsz)
|
|
|
|
|
im = tf.zeros((batch_size, *imgsz, ch)) # BHWC order for TensorFlow
|
|
|
|
|
_ = tf_model.predict(im, tf_nms, agnostic_nms, topk_per_class, topk_all, iou_thres, conf_thres)
|
|
|
|
|
inputs = tf.keras.Input(shape=(*imgsz, ch), batch_size=None if dynamic else batch_size)
|
|
|
|
|
outputs = tf_model.predict(inputs, tf_nms, agnostic_nms, topk_per_class, topk_all, iou_thres, conf_thres)
|
|
|
|
|
_ = tf_model.predict(im, nms, agnostic_nms, topk_per_class, topk_all, iou_thres, conf_thres)
|
|
|
|
|
inputs = tf.keras.Input(shape=(*imgsz, ch), batch_size=None if self.args.dynamic else batch_size)
|
|
|
|
|
outputs = tf_model.predict(inputs, nms, agnostic_nms, topk_per_class, topk_all, iou_thres, conf_thres)
|
|
|
|
|
keras_model = tf.keras.Model(inputs=inputs, outputs=outputs)
|
|
|
|
|
keras_model.trainable = False
|
|
|
|
|
keras_model.summary()
|
|
|
|
|
if keras:
|
|
|
|
|
if self.args.keras:
|
|
|
|
|
keras_model.save(f, save_format='tf')
|
|
|
|
|
else:
|
|
|
|
|
spec = tf.TensorSpec(keras_model.inputs[0].shape, keras_model.inputs[0].dtype)
|
|
|
|
@ -337,17 +450,16 @@ def export_saved_model(model,
|
|
|
|
|
m = m.get_concrete_function(spec)
|
|
|
|
|
frozen_func = convert_variables_to_constants_v2(m)
|
|
|
|
|
tfm = tf.Module()
|
|
|
|
|
tfm.__call__ = tf.function(lambda x: frozen_func(x)[:4] if tf_nms else frozen_func(x), [spec])
|
|
|
|
|
tfm.__call__ = tf.function(lambda x: frozen_func(x)[:4] if nms else frozen_func(x), [spec])
|
|
|
|
|
tfm.__call__(im)
|
|
|
|
|
tf.saved_model.save(tfm,
|
|
|
|
|
f,
|
|
|
|
|
options=tf.saved_model.SaveOptions(experimental_custom_gradients=False) if check_version(
|
|
|
|
|
tf.__version__, '2.6') else tf.saved_model.SaveOptions())
|
|
|
|
|
options=tf.saved_model.SaveOptions(experimental_custom_gradients=False)
|
|
|
|
|
if check_version(tf.__version__, '2.6') else tf.saved_model.SaveOptions())
|
|
|
|
|
return f, keras_model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@try_export
|
|
|
|
|
def export_pb(keras_model, file, prefix=colorstr('TensorFlow GraphDef:')):
|
|
|
|
|
@try_export
|
|
|
|
|
def _export_pb(self, keras_model, file, prefix=colorstr('TensorFlow GraphDef:')):
|
|
|
|
|
# YOLOv5 TensorFlow GraphDef *.pb export https://github.com/leimao/Frozen_Graph_TensorFlow
|
|
|
|
|
import tensorflow as tf # noqa
|
|
|
|
|
from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2 # noqa
|
|
|
|
@ -362,30 +474,39 @@ def export_pb(keras_model, file, prefix=colorstr('TensorFlow GraphDef:')):
|
|
|
|
|
tf.io.write_graph(graph_or_graph_def=frozen_func.graph, logdir=str(f.parent), name=f.name, as_text=False)
|
|
|
|
|
return f, None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@try_export
|
|
|
|
|
def export_tflite(keras_model, im, file, int8, data, nms, agnostic_nms, prefix=colorstr('TensorFlow Lite:')):
|
|
|
|
|
@try_export
|
|
|
|
|
def _export_tflite(self, keras_model, int8, data, nms, agnostic_nms, prefix=colorstr('TensorFlow Lite:')):
|
|
|
|
|
# YOLOv5 TensorFlow Lite export
|
|
|
|
|
import tensorflow as tf # noqa
|
|
|
|
|
|
|
|
|
|
LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...')
|
|
|
|
|
batch_size, ch, *imgsz = list(im.shape) # BCHW
|
|
|
|
|
f = str(file).replace('.pt', '-fp16.tflite')
|
|
|
|
|
batch_size, ch, *imgsz = list(self.im.shape) # BCHW
|
|
|
|
|
f = str(self.file).replace(self.file.suffix, '-fp16.tflite')
|
|
|
|
|
|
|
|
|
|
converter = tf.lite.TFLiteConverter.from_keras_model(keras_model)
|
|
|
|
|
converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS]
|
|
|
|
|
converter.target_spec.supported_types = [tf.float16]
|
|
|
|
|
converter.optimizations = [tf.lite.Optimize.DEFAULT]
|
|
|
|
|
if int8:
|
|
|
|
|
# from models.tf import representative_dataset_gen
|
|
|
|
|
# dataset = LoadImages(check_dataset(check_yaml(data))['train'], imgsz=imgsz, auto=False)
|
|
|
|
|
# converter.representative_dataset = lambda: representative_dataset_gen(dataset, ncalib=100)
|
|
|
|
|
|
|
|
|
|
def representative_dataset_gen(dataset, n_images=100):
|
|
|
|
|
# Dataset generator for use with converter.representative_dataset, returns a generator of np arrays
|
|
|
|
|
for n, (path, img, im0s, vid_cap, string) in enumerate(dataset):
|
|
|
|
|
im = np.transpose(img, [1, 2, 0])
|
|
|
|
|
im = np.expand_dims(im, axis=0).astype(np.float32)
|
|
|
|
|
im /= 255
|
|
|
|
|
yield [im]
|
|
|
|
|
if n >= n_images:
|
|
|
|
|
break
|
|
|
|
|
|
|
|
|
|
dataset = LoadImages(check_dataset(check_yaml(data))['train'], imgsz=imgsz, auto=False)
|
|
|
|
|
converter.representative_dataset = lambda: representative_dataset_gen(dataset, n_images=100)
|
|
|
|
|
converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8]
|
|
|
|
|
converter.target_spec.supported_types = []
|
|
|
|
|
converter.inference_input_type = tf.uint8 # or tf.int8
|
|
|
|
|
converter.inference_output_type = tf.uint8 # or tf.int8
|
|
|
|
|
converter.experimental_new_quantizer = True
|
|
|
|
|
f = str(file).replace('.pt', '-int8.tflite')
|
|
|
|
|
f = str(self.file).replace(self.file.suffix, '-int8.tflite')
|
|
|
|
|
if nms or agnostic_nms:
|
|
|
|
|
converter.target_spec.supported_ops.append(tf.lite.OpsSet.SELECT_TF_OPS)
|
|
|
|
|
|
|
|
|
@ -393,9 +514,8 @@ def export_tflite(keras_model, im, file, int8, data, nms, agnostic_nms, prefix=c
|
|
|
|
|
open(f, "wb").write(tflite_model)
|
|
|
|
|
return f, None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@try_export
|
|
|
|
|
def export_edgetpu(file, prefix=colorstr('Edge TPU:')):
|
|
|
|
|
@try_export
|
|
|
|
|
def _export_edgetpu(self, prefix=colorstr('Edge TPU:')):
|
|
|
|
|
# YOLOv5 Edge TPU export https://coral.ai/docs/edgetpu/models-intro/
|
|
|
|
|
cmd = 'edgetpu_compiler --version'
|
|
|
|
|
help_url = 'https://coral.ai/docs/edgetpu/compiler/'
|
|
|
|
@ -411,30 +531,28 @@ def export_edgetpu(file, prefix=colorstr('Edge TPU:')):
|
|
|
|
|
ver = subprocess.run(cmd, shell=True, capture_output=True, check=True).stdout.decode().split()[-1]
|
|
|
|
|
|
|
|
|
|
LOGGER.info(f'\n{prefix} starting export with Edge TPU compiler {ver}...')
|
|
|
|
|
f = str(file).replace('.pt', '-int8_edgetpu.tflite') # Edge TPU model
|
|
|
|
|
f_tfl = str(file).replace('.pt', '-int8.tflite') # TFLite model
|
|
|
|
|
f = str(self.file).replace(self.file.suffix, '-int8_edgetpu.tflite') # Edge TPU model
|
|
|
|
|
f_tfl = str(self.file).replace(self.file.suffix, '-int8.tflite') # TFLite model
|
|
|
|
|
|
|
|
|
|
cmd = f"edgetpu_compiler -s -d -k 10 --out_dir {file.parent} {f_tfl}"
|
|
|
|
|
cmd = f"edgetpu_compiler -s -d -k 10 --out_dir {self.file.parent} {f_tfl}"
|
|
|
|
|
subprocess.run(cmd.split(), check=True)
|
|
|
|
|
return f, None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@try_export
|
|
|
|
|
def export_tfjs(file, prefix=colorstr('TensorFlow.js:')):
|
|
|
|
|
@try_export
|
|
|
|
|
def _export_tfjs(self, prefix=colorstr('TensorFlow.js:')):
|
|
|
|
|
# YOLOv5 TensorFlow.js export
|
|
|
|
|
check_requirements('tensorflowjs')
|
|
|
|
|
import tensorflowjs as tfjs # noqa
|
|
|
|
|
|
|
|
|
|
LOGGER.info(f'\n{prefix} starting export with tensorflowjs {tfjs.__version__}...')
|
|
|
|
|
f = str(file).replace('.pt', '_web_model') # js dir
|
|
|
|
|
f_pb = file.with_suffix('.pb') # *.pb path
|
|
|
|
|
f_json = f'{f}/model.json' # *.json path
|
|
|
|
|
f = str(self.file).replace(self.file.suffix, '_web_model') # js dir
|
|
|
|
|
f_pb = self.file.with_suffix('.pb') # *.pb path
|
|
|
|
|
f_json = Path(f) / 'model.json' # *.json path
|
|
|
|
|
|
|
|
|
|
cmd = f'tensorflowjs_converter --input_format=tf_frozen_model ' \
|
|
|
|
|
f'--output_node_names=Identity,Identity_1,Identity_2,Identity_3 {f_pb} {f}'
|
|
|
|
|
subprocess.run(cmd.split())
|
|
|
|
|
|
|
|
|
|
json = Path(f_json).read_text()
|
|
|
|
|
with open(f_json, 'w') as j: # sort JSON Identity_* in ascending order
|
|
|
|
|
subst = re.sub(
|
|
|
|
|
r'{"outputs": {"Identity.?.?": {"name": "Identity.?.?"}, '
|
|
|
|
@ -443,12 +561,11 @@ def export_tfjs(file, prefix=colorstr('TensorFlow.js:')):
|
|
|
|
|
r'"Identity.?.?": {"name": "Identity.?.?"}}}', r'{"outputs": {"Identity": {"name": "Identity"}, '
|
|
|
|
|
r'"Identity_1": {"name": "Identity_1"}, '
|
|
|
|
|
r'"Identity_2": {"name": "Identity_2"}, '
|
|
|
|
|
r'"Identity_3": {"name": "Identity_3"}}}', json)
|
|
|
|
|
r'"Identity_3": {"name": "Identity_3"}}}', f_json.read_text())
|
|
|
|
|
j.write(subst)
|
|
|
|
|
return f, None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def add_tflite_metadata(file, metadata, num_outputs):
|
|
|
|
|
def _add_tflite_metadata(self, file, num_outputs):
|
|
|
|
|
# Add metadata to *.tflite models per https://www.tensorflow.org/lite/models/convert/metadata
|
|
|
|
|
with contextlib.suppress(ImportError):
|
|
|
|
|
# check_requirements('tflite_support')
|
|
|
|
@ -458,7 +575,7 @@ def add_tflite_metadata(file, metadata, num_outputs):
|
|
|
|
|
|
|
|
|
|
tmp_file = Path('/tmp/meta.txt')
|
|
|
|
|
with open(tmp_file, 'w') as meta_f:
|
|
|
|
|
meta_f.write(str(metadata))
|
|
|
|
|
meta_f.write(str(self.metadata))
|
|
|
|
|
|
|
|
|
|
model_meta = _metadata_fb.ModelMetadataT()
|
|
|
|
|
label_file = _metadata_fb.AssociatedFileT()
|
|
|
|
@ -481,128 +598,26 @@ def add_tflite_metadata(file, metadata, num_outputs):
|
|
|
|
|
tmp_file.unlink()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@smart_inference_mode()
|
|
|
|
|
def export_model(
|
|
|
|
|
model, # model
|
|
|
|
|
file=ROOT / 'yolov8n.pt',
|
|
|
|
|
data=ROOT / 'data/coco128.yaml', # 'dataset.yaml path'
|
|
|
|
|
imgsz=(640, 640), # image (height, width)
|
|
|
|
|
batch_size=1, # batch size
|
|
|
|
|
device=torch.device('cpu'), # cuda device, i.e. 0 or 0,1,2,3 or cpu
|
|
|
|
|
format='onnx', # export format
|
|
|
|
|
half=False, # FP16 half-precision export
|
|
|
|
|
keras=False, # use Keras
|
|
|
|
|
optimize=False, # TorchScript: optimize for mobile
|
|
|
|
|
int8=False, # CoreML/TF INT8 quantization
|
|
|
|
|
dynamic=False, # ONNX/TF/TensorRT: dynamic axes
|
|
|
|
|
simplify=False, # ONNX: simplify model
|
|
|
|
|
opset=17, # ONNX: opset version
|
|
|
|
|
verbose=False, # TensorRT: verbose log
|
|
|
|
|
workspace=4, # TensorRT: workspace size (GB)
|
|
|
|
|
nms=False, # TF: add NMS to model
|
|
|
|
|
agnostic_nms=False, # TF: add agnostic NMS to model
|
|
|
|
|
topk_per_class=100, # TF.js NMS: topk per class to keep
|
|
|
|
|
topk_all=100, # TF.js NMS: topk for all classes to keep
|
|
|
|
|
iou_thres=0.45, # TF.js NMS: IoU threshold
|
|
|
|
|
conf_thres=0.25, # TF.js NMS: confidence threshold
|
|
|
|
|
):
|
|
|
|
|
t = time.time()
|
|
|
|
|
format = format.lower() # to lowercase
|
|
|
|
|
fmts = tuple(export_formats()['Argument'][1:]) # available export formats
|
|
|
|
|
flags = [x == format for x in fmts]
|
|
|
|
|
assert sum(flags), f'ERROR: Invalid format={format}, valid formats are {fmts}'
|
|
|
|
|
jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle = flags # export booleans
|
|
|
|
|
|
|
|
|
|
# Load PyTorch model
|
|
|
|
|
device = select_device(device)
|
|
|
|
|
if half:
|
|
|
|
|
assert device.type != 'cpu' or coreml, '--half only compatible with GPU export, i.e. use --device 0'
|
|
|
|
|
assert not dynamic, '--half not compatible with --dynamic, i.e. use either --half or --dynamic but not both'
|
|
|
|
|
model = deepcopy(model).fuse() # load FP32 model
|
|
|
|
|
|
|
|
|
|
# Checks
|
|
|
|
|
if isinstance(imgsz, int):
|
|
|
|
|
imgsz = [imgsz]
|
|
|
|
|
imgsz *= 2 if len(imgsz) == 1 else 1 # expand
|
|
|
|
|
if optimize:
|
|
|
|
|
assert device.type == 'cpu', '--optimize not compatible with cuda devices, i.e. use --device cpu'
|
|
|
|
|
|
|
|
|
|
# Input
|
|
|
|
|
gs = int(max(model.stride)) # grid size (max stride)
|
|
|
|
|
imgsz = [check_imgsz(x, gs) for x in imgsz] # verify img_size are gs-multiples
|
|
|
|
|
im = torch.zeros(batch_size, 3, *imgsz).to(device) # image size(1,3,320,192) BCHW iDetection
|
|
|
|
|
|
|
|
|
|
# Update model
|
|
|
|
|
model.eval()
|
|
|
|
|
for k, m in model.named_modules():
|
|
|
|
|
if isinstance(m, (Detect, Segment)):
|
|
|
|
|
m.dynamic = dynamic
|
|
|
|
|
m.export = True
|
|
|
|
|
|
|
|
|
|
for _ in range(2):
|
|
|
|
|
y = model(im) # dry runs
|
|
|
|
|
if half and not coreml:
|
|
|
|
|
im, model = im.half(), model.half() # to FP16
|
|
|
|
|
shape = tuple((y[0] if isinstance(y, tuple) else y).shape) # model output shape
|
|
|
|
|
metadata = {'stride': int(max(model.stride)), 'names': model.names} # model metadata
|
|
|
|
|
LOGGER.info(f"\n{colorstr('PyTorch:')} starting from {file} with output shape {shape} ({file_size(file):.1f} MB)")
|
|
|
|
|
@hydra.main(version_base=None, config_path=str(DEFAULT_CONFIG.parent), config_name=DEFAULT_CONFIG.name)
|
|
|
|
|
def export(cfg):
|
|
|
|
|
cfg.model = cfg.model or "yolov8n.yaml"
|
|
|
|
|
cfg.format = cfg.format or "torchscript"
|
|
|
|
|
exporter = Exporter(cfg)
|
|
|
|
|
|
|
|
|
|
# Warnings
|
|
|
|
|
warnings.filterwarnings('ignore', category=torch.jit.TracerWarning) # suppress TracerWarning
|
|
|
|
|
warnings.filterwarnings('ignore', category=UserWarning) # suppress shape prim::Constant type missing ONNX warning
|
|
|
|
|
warnings.filterwarnings('ignore', category=DeprecationWarning) # suppress CoreML np.bool deprecation warning
|
|
|
|
|
model = None
|
|
|
|
|
if isinstance(cfg.model, (str, Path)):
|
|
|
|
|
if Path(cfg.model).suffix == '.yaml':
|
|
|
|
|
model = DetectionModel(cfg.model)
|
|
|
|
|
elif Path(cfg.model).suffix == '.pt':
|
|
|
|
|
model = attempt_load_weights(cfg.model)
|
|
|
|
|
else:
|
|
|
|
|
TypeError(f'Unsupported model type {cfg.model}')
|
|
|
|
|
exporter(model=model)
|
|
|
|
|
|
|
|
|
|
# Exports
|
|
|
|
|
f = [''] * len(fmts) # exported filenames
|
|
|
|
|
if jit: # TorchScript
|
|
|
|
|
f[0], _ = export_torchscript(model, im, file, optimize)
|
|
|
|
|
if engine: # TensorRT required before ONNX
|
|
|
|
|
f[1], _ = export_engine(model, im, file, half, dynamic, simplify, workspace, verbose)
|
|
|
|
|
if onnx or xml: # OpenVINO requires ONNX
|
|
|
|
|
f[2], _ = export_onnx(model, im, file, opset, dynamic, simplify)
|
|
|
|
|
if xml: # OpenVINO
|
|
|
|
|
f[3], _ = export_openvino(file, metadata, half)
|
|
|
|
|
if coreml: # CoreML
|
|
|
|
|
f[4], _ = export_coreml(model, im, file, int8, half)
|
|
|
|
|
if any((saved_model, pb, tflite, edgetpu, tfjs)): # TensorFlow formats
|
|
|
|
|
assert not tflite or not tfjs, 'TFLite and TF.js models must be exported separately, please pass only one type.'
|
|
|
|
|
assert not isinstance(model, ClassificationModel), 'ClassificationModel export to TF formats not yet supported.'
|
|
|
|
|
f[5], s_model = export_saved_model(model.cpu(),
|
|
|
|
|
im,
|
|
|
|
|
file,
|
|
|
|
|
dynamic,
|
|
|
|
|
tf_nms=nms or agnostic_nms or tfjs,
|
|
|
|
|
agnostic_nms=agnostic_nms or tfjs,
|
|
|
|
|
topk_per_class=topk_per_class,
|
|
|
|
|
topk_all=topk_all,
|
|
|
|
|
iou_thres=iou_thres,
|
|
|
|
|
conf_thres=conf_thres,
|
|
|
|
|
keras=keras)
|
|
|
|
|
if pb or tfjs: # pb prerequisite to tfjs
|
|
|
|
|
f[6], _ = export_pb(s_model, file)
|
|
|
|
|
if tflite or edgetpu:
|
|
|
|
|
f[7], _ = export_tflite(s_model, im, file, int8 or edgetpu, data=data, nms=nms, agnostic_nms=agnostic_nms)
|
|
|
|
|
if edgetpu:
|
|
|
|
|
f[8], _ = export_edgetpu(file)
|
|
|
|
|
add_tflite_metadata(f[8] or f[7], metadata, num_outputs=len(s_model.outputs))
|
|
|
|
|
if tfjs:
|
|
|
|
|
f[9], _ = export_tfjs(file)
|
|
|
|
|
if paddle: # PaddlePaddle
|
|
|
|
|
f[10], _ = export_paddle(model, im, file, metadata)
|
|
|
|
|
|
|
|
|
|
# Finish
|
|
|
|
|
f = [str(x) for x in f if x] # filter out '' and None
|
|
|
|
|
if any(f):
|
|
|
|
|
cls, det, seg = (isinstance(model, x) for x in (ClassificationModel, DetectionModel, SegmentationModel)) # type
|
|
|
|
|
det &= not seg # segmentation models inherit from SegmentationModel(DetectionModel)
|
|
|
|
|
dir = Path('segment' if seg else 'classify' if cls else '')
|
|
|
|
|
h = '--half' if half else '' # --half FP16 inference arg
|
|
|
|
|
s = "# WARNING ⚠️ ClassificationModel not yet supported for PyTorch Hub AutoShape inference" if cls else \
|
|
|
|
|
"# WARNING ⚠️ SegmentationModel not yet supported for PyTorch Hub AutoShape inference" if seg else ''
|
|
|
|
|
LOGGER.info(f'\nExport complete ({time.time() - t:.1f}s)'
|
|
|
|
|
f"\nResults saved to {colorstr('bold', file.parent.resolve())}"
|
|
|
|
|
f"\nDetect: python {dir / 'predict.py'} --weights {f[-1]} {h}"
|
|
|
|
|
f"\nValidate: python {dir / 'val.py'} --weights {f[-1]} {h}"
|
|
|
|
|
f"\nPyTorch Hub: model = torch.hub.load('ultralytics/yolov5', 'custom', '{f[-1]}') {s}"
|
|
|
|
|
f"\nVisualize: https://netron.app")
|
|
|
|
|
return f # return list of exported files/dirs
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
|
"""
|
|
|
|
|
CLI:
|
|
|
|
|
yolo mode=export model=yolov8n.yaml format=onnx
|
|
|
|
|
"""
|
|
|
|
|
export()
|
|
|
|
|