Create Exporter() Class (#117)

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
Glenn Jocher
2022-12-30 01:28:41 +01:00
committed by GitHub
parent a9dc1637c2
commit 076d73cfaa
10 changed files with 531 additions and 540 deletions

View File

@ -25,14 +25,12 @@ TQDM_BAR_FORMAT = '{l_bar}{bar:10}{r_bar}' # tqdm bar format
LOGGING_NAME = 'yolov5'
HELP_MSG = \
"""
Please refer to below Usage examples for help running YOLOv8
For help visit Ultralytics Community at https://community.ultralytics.com/
Submit bug reports to https//github.com/ultralytics/ultralytics
Please refer to below Usage examples for help running YOLOv8:
Install:
pip install ultralytics
Python usage:
Python SDK:
from ultralytics import YOLO
model = YOLO.new('yolov8n.yaml') # create a new model from scratch
@ -42,12 +40,15 @@ HELP_MSG = \
results = model.predict(source='bus.jpg')
success = model.export(format='onnx')
CLI usage:
yolo task=detect mode=train model=yolov8n.yaml ...
classify predict yolov8n-cls.yaml
segment val yolov8n-seg.yaml
CLI:
yolo task=detect mode=train model=yolov8n.yaml args...
classify predict yolov8n-cls.yaml args...
segment val yolov8n-seg.yaml args...
export yolov8n.pt format=onnx args...
For all arguments see https://github.com/ultralytics/ultralytics/blob/main/ultralytics/yolo/utils/configs/default.yaml
Docs: https://docs.ultralytics.com
Community: https://community.ultralytics.com
GitHub: https://github.com/ultralytics/ultralytics
"""
# Settings
@ -56,7 +57,6 @@ HELP_MSG = \
pd.options.display.max_columns = 10
cv2.setNumThreads(0) # prevent OpenCV from multithreading (incompatible with PyTorch DataLoader)
os.environ['NUMEXPR_MAX_THREADS'] = str(NUM_THREADS) # NumExpr max threads
os.environ['OMP_NUM_THREADS'] = '1' if platform.system() == 'darwin' else str(NUM_THREADS) # OpenMP (PyTorch and SciPy)
def is_colab():

View File

@ -36,8 +36,8 @@ def on_val_end(trainer):
if trainer.epoch == 0:
model_info = {
"Parameters": get_num_params(trainer.model),
"GFLOPs": round(get_flops(trainer.model), 1),
"Inference speed (ms/img)": round(trainer.validator.speed[1], 1)}
"GFLOPs": round(get_flops(trainer.model), 3),
"Inference speed (ms/img)": round(trainer.validator.speed[1], 3)}
Task.current_task().connect(model_info, name='Model')

View File

@ -19,8 +19,8 @@ def on_val_end(trainer):
if trainer.epoch == 0:
model_info = {
"model/parameters": get_num_params(trainer.model),
"model/GFLOPs": round(get_flops(trainer.model), 1),
"model/speed(ms)": round(trainer.validator.speed[1], 1)}
"model/GFLOPs": round(get_flops(trainer.model), 3),
"model/speed(ms)": round(trainer.validator.speed[1], 3)}
wandb.run.log(model_info, step=trainer.epoch + 1)