|
|
|
@ -1,3 +1,6 @@
|
|
|
|
|
import os
|
|
|
|
|
from pathlib import Path
|
|
|
|
|
|
|
|
|
|
from ultralytics.yolo.utils.torch_utils import get_flops, get_num_params
|
|
|
|
|
|
|
|
|
|
try:
|
|
|
|
@ -9,6 +12,13 @@ except (ImportError, AssertionError):
|
|
|
|
|
clearml = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _log_images(imgs_dict, group="", step=0):
|
|
|
|
|
task = Task.current_task()
|
|
|
|
|
if task:
|
|
|
|
|
for k, v in imgs_dict.items():
|
|
|
|
|
task.get_logger().report_image(group, k, step, v)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def on_train_start(trainer):
|
|
|
|
|
# TODO: reuse existing task
|
|
|
|
|
task = Task.init(project_name=trainer.args.project if trainer.args.project != 'runs/train' else 'YOLOv8',
|
|
|
|
@ -20,6 +30,14 @@ def on_train_start(trainer):
|
|
|
|
|
task.connect(dict(trainer.args), name='General')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def on_epoch_start(trainer):
|
|
|
|
|
if trainer.epoch == 1:
|
|
|
|
|
plots = [filename for filename in os.listdir(trainer.save_dir) if filename.startswith("train_batch")]
|
|
|
|
|
imgs_dict = {f"train_batch_{i}": Path(trainer.save_dir) / img for i, img in enumerate(plots)}
|
|
|
|
|
if imgs_dict:
|
|
|
|
|
_log_images(imgs_dict, "Mosaic", trainer.epoch)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def on_val_end(trainer):
|
|
|
|
|
if trainer.epoch == 0:
|
|
|
|
|
model_info = {
|
|
|
|
@ -37,5 +55,6 @@ def on_train_end(trainer):
|
|
|
|
|
|
|
|
|
|
callbacks = {
|
|
|
|
|
"on_train_start": on_train_start,
|
|
|
|
|
"on_epoch_start": on_epoch_start,
|
|
|
|
|
"on_val_end": on_val_end,
|
|
|
|
|
"on_train_end": on_train_end} if clearml else {}
|
|
|
|
|