---
comments: true
description: Kickstart your journey with YOLOv5. Learn how to install, run inference, and train models on your own images. Dive headfirst into object detection with PyTorch.
keywords: YOLOv5, Quickstart, Installation, Inference, Training, Object detection, PyTorch, Ultralytics
---
# YOLOv5 Quickstart
See below for quickstart examples.
## Install
Clone repo and install [requirements.txt ](https://github.com/ultralytics/yolov5/blob/master/requirements.txt ) in a
[**Python>=3.7.0** ](https://www.python.org/ ) environment, including
[**PyTorch>=1.7** ](https://pytorch.org/get-started/locally/ ).
```bash
git clone https://github.com/ultralytics/yolov5 # clone
cd yolov5
pip install -r requirements.txt # install
```
## Inference
YOLOv5 [PyTorch Hub ](https://docs.ultralytics.com/yolov5/tutorials/pytorch_hub_model_loading ) inference. [Models ](https://github.com/ultralytics/yolov5/tree/master/models ) download automatically from the latest
YOLOv5 [release ](https://github.com/ultralytics/yolov5/releases ).
```python
import torch
# Model
model = torch.hub.load("ultralytics/yolov5", "yolov5s") # or yolov5n - yolov5x6, custom
# Images
img = "https://ultralytics.com/images/zidane.jpg" # or file, Path, PIL, OpenCV, numpy, list
# Inference
results = model(img)
# Results
results.print() # or .show(), .save(), .crop(), .pandas(), etc.
```
## Inference with detect.py
`detect.py` runs inference on a variety of sources, downloading [models ](https://github.com/ultralytics/yolov5/tree/master/models ) automatically from
the latest YOLOv5 [release ](https://github.com/ultralytics/yolov5/releases ) and saving results to `runs/detect` .
```bash
python detect.py --weights yolov5s.pt --source 0 # webcam
img.jpg # image
vid.mp4 # video
screen # screenshot
path/ # directory
list.txt # list of images
list.streams # list of streams
'path/*.jpg' # glob
'https://youtu.be/Zgi9g1ksQHc' # YouTube
'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream
```
## Training
The commands below reproduce YOLOv5 [COCO ](https://github.com/ultralytics/yolov5/blob/master/data/scripts/get_coco.sh )
results. [Models ](https://github.com/ultralytics/yolov5/tree/master/models )
and [datasets ](https://github.com/ultralytics/yolov5/tree/master/data ) download automatically from the latest
YOLOv5 [release ](https://github.com/ultralytics/yolov5/releases ). Training times for YOLOv5n/s/m/l/x are
1/2/4/6/8 days on a V100 GPU ([Multi-GPU](https://docs.ultralytics.com/yolov5/tutorials/multi_gpu_training) times faster). Use the
largest `--batch-size` possible, or pass `--batch-size -1` for
YOLOv5 [AutoBatch ](https://github.com/ultralytics/yolov5/pull/5092 ). Batch sizes shown for V100-16GB.
```bash
python train.py --data coco.yaml --epochs 300 --weights '' --cfg yolov5n.yaml --batch-size 128
yolov5s 64
yolov5m 40
yolov5l 24
yolov5x 16
```
< img width = "800" src = "https://user-images.githubusercontent.com/26833433/90222759-949d8800-ddc1-11ea-9fa1-1c97eed2b963.png" >