|
|
|
The YOLO Command Line Interface (CLI) is the easiest way to get started training, validating, predicting and exporting
|
|
|
|
YOLOv8 models.
|
|
|
|
|
|
|
|
The `yolo` command is used for all actions:
|
|
|
|
|
|
|
|
!!! example ""
|
|
|
|
|
|
|
|
=== "CLI"
|
|
|
|
|
|
|
|
```bash
|
|
|
|
yolo TASK MODE ARGS
|
|
|
|
```
|
|
|
|
|
|
|
|
Where:
|
|
|
|
|
|
|
|
- `TASK` (optional) is one of `[detect, segment, classify]`. If it is not passed explicitly YOLOv8 will try to guess
|
|
|
|
the `TASK` from the model type.
|
|
|
|
- `MODE` (required) is one of `[train, val, predict, export]`
|
|
|
|
- `ARGS` (optional) are any number of custom `arg=value` pairs like `imgsz=320` that override defaults.
|
|
|
|
For a full list of available `ARGS` see the [Configuration](cfg.md) page.
|
|
|
|
|
|
|
|
!!! note ""
|
|
|
|
|
|
|
|
<b>Note:</b> Arguments MUST be passed as `arg=val` with an equals sign and a space between `arg=val` pairs
|
|
|
|
|
|
|
|
- `yolo predict model=yolov8n.pt imgsz=640 conf=0.25` ✅
|
|
|
|
- `yolo predict model yolov8n.pt imgsz 640 conf 0.25` ❌
|
|
|
|
- `yolo predict --model yolov8n.pt --imgsz 640 --conf 0.25` ❌
|
|
|
|
|
|
|
|
## Train
|
|
|
|
|
|
|
|
Train YOLOv8n on the COCO128 dataset for 100 epochs at image size 640. For a full list of available arguments see
|
|
|
|
the [Configuration](cfg.md) page.
|
|
|
|
|
|
|
|
!!! example ""
|
|
|
|
|
|
|
|
=== "CLI"
|
|
|
|
|
|
|
|
```bash
|
|
|
|
yolo detect train data=coco128.yaml model=yolov8n.pt epochs=100 imgsz=640
|
|
|
|
```
|
|
|
|
|
|
|
|
=== "Python"
|
|
|
|
|
|
|
|
```python
|
|
|
|
from ultralytics import YOLO
|
|
|
|
|
|
|
|
# Load a model
|
|
|
|
model = YOLO("yolov8n.yaml") # build a new model from scratch
|
|
|
|
model = YOLO("yolov8n.pt") # load a pretrained model (recommended for training)
|
|
|
|
|
|
|
|
# Train the model
|
|
|
|
results = model.train(data="coco128.yaml", epochs=100, imgsz=640)
|
|
|
|
```
|
|
|
|
|
|
|
|
## Val
|
|
|
|
|
|
|
|
Validate trained YOLOv8n model accuracy on the COCO128 dataset. No argument need to passed as the `model` retains it's
|
|
|
|
training `data` and arguments as model attributes.
|
|
|
|
|
|
|
|
!!! example ""
|
|
|
|
|
|
|
|
=== "CLI"
|
|
|
|
|
|
|
|
```bash
|
|
|
|
yolo detect val model=yolov8n.pt # val official model
|
|
|
|
yolo detect val model=path/to/best.pt # val custom model
|
|
|
|
```
|
|
|
|
|
|
|
|
=== "Python"
|
|
|
|
|
|
|
|
```python
|
|
|
|
from ultralytics import YOLO
|
|
|
|
|
|
|
|
# Load a model
|
|
|
|
model = YOLO("yolov8n.pt") # load an official model
|
|
|
|
model = YOLO("path/to/best.pt") # load a custom model
|
|
|
|
|
|
|
|
# Validate the model
|
|
|
|
results = model.val() # no arguments needed, dataset and settings remembered
|
|
|
|
```
|
|
|
|
|
|
|
|
## Predict
|
|
|
|
|
|
|
|
Use a trained YOLOv8n model to run predictions on images.
|
|
|
|
|
|
|
|
!!! example ""
|
|
|
|
|
|
|
|
=== "CLI"
|
|
|
|
|
|
|
|
```bash
|
|
|
|
yolo detect predict model=yolov8n.pt source="https://ultralytics.com/images/bus.jpg" # predict with official model
|
|
|
|
yolo detect predict model=path/to/best.pt source="https://ultralytics.com/images/bus.jpg" # predict with custom model
|
|
|
|
```
|
|
|
|
|
|
|
|
=== "Python"
|
|
|
|
|
|
|
|
```python
|
|
|
|
from ultralytics import YOLO
|
|
|
|
|
|
|
|
# Load a model
|
|
|
|
model = YOLO("yolov8n.pt") # load an official model
|
|
|
|
model = YOLO("path/to/best.pt") # load a custom model
|
|
|
|
|
|
|
|
# Predict with the model
|
|
|
|
results = model("https://ultralytics.com/images/bus.jpg") # predict on an image
|
|
|
|
```
|
|
|
|
|
|
|
|
## Export
|
|
|
|
|
|
|
|
Export a YOLOv8n model to a different format like ONNX, CoreML, etc.
|
|
|
|
|
|
|
|
!!! example ""
|
|
|
|
|
|
|
|
=== "CLI"
|
|
|
|
|
|
|
|
```bash
|
|
|
|
yolo export model=yolov8n.pt format=onnx # export official model
|
|
|
|
yolo export model=path/to/best.pt format=onnx # export custom trained model
|
|
|
|
```
|
|
|
|
|
|
|
|
=== "Python"
|
|
|
|
|
|
|
|
```python
|
|
|
|
from ultralytics import YOLO
|
|
|
|
|
|
|
|
# Load a model
|
|
|
|
model = YOLO("yolov8n.pt") # load an official model
|
|
|
|
model = YOLO("path/to/best.pt") # load a custom trained
|
|
|
|
|
|
|
|
# Export the model
|
|
|
|
model.export(format="onnx")
|
|
|
|
```
|
|
|
|
|
|
|
|
Available YOLOv8 export formats include:
|
|
|
|
|
|
|
|
| Format | `format=` | Model |
|
|
|
|
|----------------------------------------------------------------------------|--------------------|---------------------------|
|
|
|
|
| [PyTorch](https://pytorch.org/) | - | `yolov8n.pt` |
|
|
|
|
| [TorchScript](https://pytorch.org/docs/stable/jit.html) | `torchscript` | `yolov8n.torchscript` |
|
|
|
|
| [ONNX](https://onnx.ai/) | `onnx` | `yolov8n.onnx` |
|
|
|
|
| [OpenVINO](https://docs.openvino.ai/latest/index.html) | `openvino` | `yolov8n_openvino_model/` |
|
|
|
|
| [TensorRT](https://developer.nvidia.com/tensorrt) | `engine` | `yolov8n.engine` |
|
|
|
|
| [CoreML](https://github.com/apple/coremltools) | `coreml` | `yolov8n.mlmodel` |
|
|
|
|
| [TensorFlow SavedModel](https://www.tensorflow.org/guide/saved_model) | `saved_model` | `yolov8n_saved_model/` |
|
|
|
|
| [TensorFlow GraphDef](https://www.tensorflow.org/api_docs/python/tf/Graph) | `pb` | `yolov8n.pb` |
|
|
|
|
| [TensorFlow Lite](https://www.tensorflow.org/lite) | `tflite` | `yolov8n.tflite` |
|
|
|
|
| [TensorFlow Edge TPU](https://coral.ai/docs/edgetpu/models-intro/) | `edgetpu` | `yolov8n_edgetpu.tflite` |
|
|
|
|
| [TensorFlow.js](https://www.tensorflow.org/js) | `tfjs` | `yolov8n_web_model/` |
|
|
|
|
| [PaddlePaddle](https://github.com/PaddlePaddle) | `paddle` | `yolov8n_paddle_model/` |
|
|
|
|
|
|
|
|
---
|
|
|
|
|
|
|
|
## Overriding default arguments
|
|
|
|
|
|
|
|
Default arguments can be overriden by simply passing them as arguments in the CLI in `arg=value` pairs.
|
|
|
|
|
|
|
|
!!! tip ""
|
|
|
|
|
|
|
|
=== "Example 1"
|
|
|
|
Train a detection model for `10 epochs` with `learning_rate` of `0.01`
|
|
|
|
```bash
|
|
|
|
yolo detect train data=coco128.yaml model=yolov8n.pt epochs=10 lr0=0.01
|
|
|
|
```
|
|
|
|
|
|
|
|
=== "Example 2"
|
|
|
|
Predict a YouTube video using a pretrained segmentation model at image size 320:
|
|
|
|
```bash
|
|
|
|
yolo segment predict model=yolov8n-seg.pt source=https://youtu.be/Zgi9g1ksQHc imgsz=320
|
|
|
|
```
|
|
|
|
|
|
|
|
=== "Example 3"
|
|
|
|
Validate a pretrained detection model at batch-size 1 and image size 640:
|
|
|
|
```bash
|
|
|
|
yolo detect val model=yolov8n.pt data=coco128.yaml batch=1 imgsz=640
|
|
|
|
```
|
|
|
|
|
|
|
|
---
|
|
|
|
|
|
|
|
## Overriding default config file
|
|
|
|
|
|
|
|
You can override the `default.yaml` config file entirely by passing a new file with the `cfg` arguments,
|
|
|
|
i.e. `cfg=custom.yaml`.
|
|
|
|
|
|
|
|
To do this first create a copy of `default.yaml` in your current working dir with the `yolo copy-config` command.
|
|
|
|
|
|
|
|
This will create `default_copy.yaml`, which you can then pass as `cfg=default_copy.yaml` along with any additional args,
|
|
|
|
like `imgsz=320` in this example:
|
|
|
|
|
|
|
|
!!! example ""
|
|
|
|
|
|
|
|
=== "CLI"
|
|
|
|
```bash
|
|
|
|
yolo copy-config
|
|
|
|
yolo cfg=default_copy.yaml imgsz=320
|
|
|
|
```
|