You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
141 lines
3.9 KiB
141 lines
3.9 KiB
2 years ago
|
This is the simplest way of simply using YOLOv8 models in a Python environment. It can be imported from
|
||
|
the `ultralytics` module.
|
||
|
|
||
|
!!! example "Train"
|
||
|
|
||
|
=== "From pretrained(recommanded)"
|
||
|
```python
|
||
|
from ultralytics import YOLO
|
||
|
|
||
|
model = YOLO("yolov8n.pt") # pass any model type
|
||
|
model.train(epochs=5)
|
||
|
```
|
||
|
|
||
|
=== "From scratch"
|
||
|
```python
|
||
|
from ultralytics import YOLO
|
||
|
|
||
|
model = YOLO("yolov8n.yaml")
|
||
|
model.train(data="coco128.yaml", epochs=5)
|
||
|
```
|
||
|
|
||
|
=== "Resume"
|
||
|
```python
|
||
|
TODO: Resume feature is under development and should be released soon.
|
||
|
```
|
||
|
|
||
|
!!! example "Val"
|
||
|
|
||
|
=== "Val after training"
|
||
|
```python
|
||
|
from ultralytics import YOLO
|
||
|
|
||
|
model = YOLO("yolov8n.yaml")
|
||
|
model.train(data="coco128.yaml", epochs=5)
|
||
|
model.val() # It'll automatically evaluate the data you trained.
|
||
|
```
|
||
|
|
||
|
=== "Val independently"
|
||
|
```python
|
||
|
from ultralytics import YOLO
|
||
|
|
||
|
model = YOLO("model.pt")
|
||
|
# It'll use the data yaml file in model.pt if you don't set data.
|
||
|
model.val()
|
||
|
# or you can set the data you want to val
|
||
|
model.val(data="coco128.yaml")
|
||
|
```
|
||
|
|
||
|
!!! example "Predict"
|
||
|
|
||
|
=== "From source"
|
||
|
```python
|
||
|
from ultralytics import YOLO
|
||
|
|
||
|
model = YOLO("model.pt")
|
||
|
model.predict(source="0") # accepts all formats - img/folder/vid.*(mp4/format). 0 for webcam
|
||
|
model.predict(source="folder", show=True) # Display preds. Accepts all yolo predict arguments
|
||
|
|
||
|
```
|
||
|
|
||
|
=== "From image/ndarray/tensor"
|
||
|
```python
|
||
|
# TODO, still working on it.
|
||
|
```
|
||
|
|
||
|
|
||
|
=== "Return outputs"
|
||
|
```python
|
||
|
from ultralytics import YOLO
|
||
|
|
||
|
model = YOLO("model.pt")
|
||
|
outputs = model.predict(source="0", return_outputs=True) # treat predict as a Python generator
|
||
|
for output in outputs:
|
||
|
# each output here is a dict.
|
||
|
# for detection
|
||
|
print(output["det"]) # np.ndarray, (N, 6), xyxy, score, cls
|
||
|
# for segmentation
|
||
|
print(output["det"]) # np.ndarray, (N, 6), xyxy, score, cls
|
||
|
print(output["segment"]) # List[np.ndarray] * N, bounding coordinates of masks
|
||
|
# for classify
|
||
|
print(output["prob"]) # np.ndarray, (num_class, ), cls prob
|
||
|
|
||
|
```
|
||
|
|
||
|
!!! note "Export and Deployment"
|
||
|
|
||
|
=== "Export, Fuse & info"
|
||
|
```python
|
||
|
from ultralytics import YOLO
|
||
|
|
||
|
model = YOLO("model.pt")
|
||
|
model.fuse()
|
||
|
model.info(verbose=True) # Print model information
|
||
|
model.export(format=) # TODO:
|
||
|
|
||
|
```
|
||
|
=== "Deployment"
|
||
|
|
||
|
|
||
|
More functionality coming soon
|
||
|
|
||
|
To know more about using `YOLO` models, refer Model class Reference
|
||
|
|
||
|
[Model reference](reference/model.md){ .md-button .md-button--primary}
|
||
|
|
||
|
---
|
||
|
|
||
|
### Using Trainers
|
||
|
|
||
|
`YOLO` model class is a high-level wrapper on the Trainer classes. Each YOLO task has its own trainer that inherits
|
||
|
from `BaseTrainer`.
|
||
|
|
||
|
!!! tip "Detection Trainer Example"
|
||
|
|
||
|
```python
|
||
|
from ultralytics.yolo import v8 import DetectionTrainer, DetectionValidator, DetectionPredictor
|
||
|
|
||
|
# trainer
|
||
|
trainer = DetectionTrainer(overrides={})
|
||
|
trainer.train()
|
||
|
trained_model = trainer.best
|
||
|
|
||
|
# Validator
|
||
|
val = DetectionValidator(args=...)
|
||
|
val(model=trained_model)
|
||
|
|
||
|
# predictor
|
||
|
pred = DetectionPredictor(overrides={})
|
||
|
pred(source=SOURCE, model=trained_model)
|
||
|
|
||
|
# resume from last weight
|
||
|
overrides["resume"] = trainer.last
|
||
|
trainer = detect.DetectionTrainer(overrides=overrides)
|
||
|
```
|
||
|
|
||
|
You can easily customize Trainers to support custom tasks or explore R&D ideas.
|
||
|
Learn more about Customizing `Trainers`, `Validators` and `Predictors` to suit your project needs in the Customization
|
||
|
Section.
|
||
|
|
||
|
[Customization tutorials](engine.md){ .md-button .md-button--primary}
|