You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
137 lines
4.2 KiB
137 lines
4.2 KiB
2 years ago
|
# Ultralytics YOLO 🚀, GPL-3.0 license
|
||
|
import os
|
||
|
|
||
2 years ago
|
import pkg_resources as pkg
|
||
|
|
||
1 year ago
|
from ultralytics.utils import LOGGER, TESTS_RUNNING
|
||
|
from ultralytics.utils.torch_utils import model_info_for_loggers
|
||
2 years ago
|
|
||
|
try:
|
||
|
from importlib.metadata import version
|
||
|
|
||
|
import dvclive
|
||
|
|
||
|
assert not TESTS_RUNNING # do not log pytest
|
||
2 years ago
|
|
||
|
ver = version('dvclive')
|
||
|
if pkg.parse_version(ver) < pkg.parse_version('2.11.0'):
|
||
|
LOGGER.debug(f'DVCLive is detected but version {ver} is incompatible (>=2.11 required).')
|
||
|
dvclive = None # noqa: F811
|
||
|
except (ImportError, AssertionError, TypeError):
|
||
2 years ago
|
dvclive = None
|
||
|
|
||
|
# DVCLive logger instance
|
||
|
live = None
|
||
|
_processed_plots = {}
|
||
|
|
||
|
# `on_fit_epoch_end` is called on final validation (probably need to be fixed)
|
||
|
# for now this is the way we distinguish final evaluation of the best model vs
|
||
|
# last epoch validation
|
||
|
_training_epoch = False
|
||
|
|
||
|
|
||
|
def _logger_disabled():
|
||
|
return os.getenv('ULTRALYTICS_DVC_DISABLED', 'false').lower() == 'true'
|
||
|
|
||
|
|
||
|
def _log_images(image_path, prefix=''):
|
||
|
if live:
|
||
|
live.log_image(os.path.join(prefix, image_path.name), image_path)
|
||
|
|
||
|
|
||
|
def _log_plots(plots, prefix=''):
|
||
|
for name, params in plots.items():
|
||
|
timestamp = params['timestamp']
|
||
2 years ago
|
if _processed_plots.get(name) != timestamp:
|
||
2 years ago
|
_log_images(name, prefix)
|
||
|
_processed_plots[name] = timestamp
|
||
|
|
||
|
|
||
|
def _log_confusion_matrix(validator):
|
||
|
targets = []
|
||
|
preds = []
|
||
|
matrix = validator.confusion_matrix.matrix
|
||
|
names = list(validator.names.values())
|
||
|
if validator.confusion_matrix.task == 'detect':
|
||
|
names += ['background']
|
||
|
|
||
|
for ti, pred in enumerate(matrix.T.astype(int)):
|
||
|
for pi, num in enumerate(pred):
|
||
|
targets.extend([names[ti]] * num)
|
||
|
preds.extend([names[pi]] * num)
|
||
|
|
||
|
live.log_sklearn_plot('confusion_matrix', targets, preds, name='cf.json', normalized=True)
|
||
|
|
||
|
|
||
|
def on_pretrain_routine_start(trainer):
|
||
|
try:
|
||
|
global live
|
||
|
if not _logger_disabled():
|
||
2 years ago
|
live = dvclive.Live(save_dvc_exp=True, cache_images=True)
|
||
2 years ago
|
LOGGER.info(
|
||
|
'DVCLive is detected and auto logging is enabled (can be disabled with `ULTRALYTICS_DVC_DISABLED=true`).'
|
||
|
)
|
||
|
else:
|
||
|
LOGGER.debug('DVCLive is detected and auto logging is disabled via `ULTRALYTICS_DVC_DISABLED`.')
|
||
|
live = None
|
||
|
except Exception as e:
|
||
|
LOGGER.warning(f'WARNING ⚠️ DVCLive installed but not initialized correctly, not logging this run. {e}')
|
||
|
|
||
|
|
||
|
def on_pretrain_routine_end(trainer):
|
||
|
_log_plots(trainer.plots, 'train')
|
||
|
|
||
|
|
||
|
def on_train_start(trainer):
|
||
|
if live:
|
||
|
live.log_params(trainer.args)
|
||
|
|
||
|
|
||
|
def on_train_epoch_start(trainer):
|
||
|
global _training_epoch
|
||
|
_training_epoch = True
|
||
|
|
||
|
|
||
|
def on_fit_epoch_end(trainer):
|
||
|
global _training_epoch
|
||
|
if live and _training_epoch:
|
||
|
all_metrics = {**trainer.label_loss_items(trainer.tloss, prefix='train'), **trainer.metrics, **trainer.lr}
|
||
|
for metric, value in all_metrics.items():
|
||
|
live.log_metric(metric, value)
|
||
|
|
||
|
if trainer.epoch == 0:
|
||
2 years ago
|
for metric, value in model_info_for_loggers(trainer).items():
|
||
2 years ago
|
live.log_metric(metric, value, plot=False)
|
||
|
|
||
|
_log_plots(trainer.plots, 'train')
|
||
|
_log_plots(trainer.validator.plots, 'val')
|
||
|
|
||
|
live.next_step()
|
||
|
_training_epoch = False
|
||
|
|
||
|
|
||
|
def on_train_end(trainer):
|
||
|
if live:
|
||
|
# At the end log the best metrics. It runs validator on the best model internally.
|
||
|
all_metrics = {**trainer.label_loss_items(trainer.tloss, prefix='train'), **trainer.metrics, **trainer.lr}
|
||
|
for metric, value in all_metrics.items():
|
||
|
live.log_metric(metric, value, plot=False)
|
||
|
|
||
|
_log_plots(trainer.plots, 'eval')
|
||
|
_log_plots(trainer.validator.plots, 'eval')
|
||
|
_log_confusion_matrix(trainer.validator)
|
||
|
|
||
|
if trainer.best.exists():
|
||
|
live.log_artifact(trainer.best, copy=True)
|
||
|
|
||
|
live.end()
|
||
|
|
||
|
|
||
|
callbacks = {
|
||
|
'on_pretrain_routine_start': on_pretrain_routine_start,
|
||
|
'on_pretrain_routine_end': on_pretrain_routine_end,
|
||
|
'on_train_start': on_train_start,
|
||
|
'on_train_epoch_start': on_train_epoch_start,
|
||
|
'on_fit_epoch_end': on_fit_epoch_end,
|
||
|
'on_train_end': on_train_end} if dvclive else {}
|