|
|
|
# Ultralytics YOLO 🚀, GPL-3.0 license
|
|
|
|
|
|
|
|
import torch
|
|
|
|
|
|
|
|
from ultralytics.yolo.engine.predictor import BasePredictor
|
|
|
|
from ultralytics.yolo.engine.results import Results
|
|
|
|
from ultralytics.yolo.utils import DEFAULT_CFG, ROOT
|
|
|
|
from ultralytics.yolo.utils.plotting import Annotator
|
|
|
|
|
|
|
|
|
|
|
|
class ClassificationPredictor(BasePredictor):
|
|
|
|
|
|
|
|
def get_annotator(self, img):
|
|
|
|
return Annotator(img, example=str(self.model.names), pil=True)
|
|
|
|
|
|
|
|
def preprocess(self, img):
|
|
|
|
img = (img if isinstance(img, torch.Tensor) else torch.from_numpy(img)).to(self.model.device)
|
|
|
|
return img.half() if self.model.fp16 else img.float() # uint8 to fp16/32
|
|
|
|
|
|
|
|
def postprocess(self, preds, img, orig_imgs):
|
|
|
|
results = []
|
|
|
|
for i, pred in enumerate(preds):
|
|
|
|
orig_img = orig_imgs[i] if isinstance(orig_imgs, list) else orig_imgs
|
|
|
|
path, _, _, _, _ = self.batch
|
|
|
|
img_path = path[i] if isinstance(path, list) else path
|
|
|
|
results.append(Results(orig_img=orig_img, path=img_path, names=self.model.names, probs=pred))
|
|
|
|
|
|
|
|
return results
|
|
|
|
|
|
|
|
def write_results(self, idx, results, batch):
|
|
|
|
p, im, im0 = batch
|
|
|
|
log_string = ''
|
|
|
|
if len(im.shape) == 3:
|
|
|
|
im = im[None] # expand for batch dim
|
|
|
|
self.seen += 1
|
|
|
|
im0 = im0.copy()
|
|
|
|
if self.source_type.webcam or self.source_type.from_img: # batch_size >= 1
|
|
|
|
log_string += f'{idx}: '
|
|
|
|
frame = self.dataset.count
|
|
|
|
else:
|
|
|
|
frame = getattr(self.dataset, 'frame', 0)
|
|
|
|
|
|
|
|
self.data_path = p
|
|
|
|
# save_path = str(self.save_dir / p.name) # im.jpg
|
|
|
|
self.txt_path = str(self.save_dir / 'labels' / p.stem) + ('' if self.dataset.mode == 'image' else f'_{frame}')
|
|
|
|
log_string += '%gx%g ' % im.shape[2:] # print string
|
|
|
|
|
|
|
|
result = results[idx]
|
|
|
|
if len(result) == 0:
|
|
|
|
return log_string
|
|
|
|
prob = result.probs
|
|
|
|
# Print results
|
|
|
|
n5 = min(len(self.model.names), 5)
|
|
|
|
top5i = prob.argsort(0, descending=True)[:n5].tolist() # top 5 indices
|
|
|
|
log_string += f"{', '.join(f'{self.model.names[j]} {prob[j]:.2f}' for j in top5i)}, "
|
|
|
|
|
|
|
|
# write
|
|
|
|
if self.args.save or self.args.show: # Add bbox to image
|
|
|
|
self.plotted_img = result.plot()
|
|
|
|
if self.args.save_txt: # Write to file
|
|
|
|
text = '\n'.join(f'{prob[j]:.2f} {self.model.names[j]}' for j in top5i)
|
|
|
|
with open(f'{self.txt_path}.txt', 'a') as f:
|
|
|
|
f.write(text + '\n')
|
|
|
|
|
|
|
|
return log_string
|
|
|
|
|
|
|
|
|
|
|
|
def predict(cfg=DEFAULT_CFG, use_python=False):
|
|
|
|
model = cfg.model or 'yolov8n-cls.pt' # or "resnet18"
|
|
|
|
source = cfg.source if cfg.source is not None else ROOT / 'assets' if (ROOT / 'assets').exists() \
|
|
|
|
else 'https://ultralytics.com/images/bus.jpg'
|
|
|
|
|
|
|
|
args = dict(model=model, source=source)
|
|
|
|
if use_python:
|
|
|
|
from ultralytics import YOLO
|
|
|
|
YOLO(model)(**args)
|
|
|
|
else:
|
|
|
|
predictor = ClassificationPredictor(overrides=args)
|
|
|
|
predictor.predict_cli()
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
predict()
|